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Noise types

1. Random spikes, possibly clustered

2. Non-permanent physical objects (e.g. fish)

3. Structural noise

Data: StatoilHydro

Problem
Remove these types of noise from

massive point sets while
keeping features intact
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Local-neighbourhood based

Previous work

→ Problems handling large clusters of noise and structural noise (types 2 and 3)

E.g. CUBE [Calder & Mayer 2003], industry standard

• Place grid over points
• Estimate heights at grid nodes

– Stastical analysis of points in neighbourhood
• Remove points far away from estimated surface
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I/O-efficient algorithms

I/O model: analyze number of data transfers between internal and external memory

• Scanning N elements:
Θ(scan(N)) = Θ(N/B) I/Os

• Sorting N elements:
Θ(sort(N)) = Θ(N/B logM/BN/B) I/Os

I/O:
B elements
at once

size:
M elements
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Delaunay triangulation for computing a TIN DEM

I/O-efficient algorithms
Previous work

I/O: B
elements
at once

size:
M elements
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• O(sort(N)) [Goodrich et al. 1993, Kumar & Ramos 2002]

• Practical O(sort(N)) [Agarwal et al. 2005]

Delaunay triangulation for computing a TIN DEM

I/O-efficient algorithms
Previous work

I/O: B
elements
at once

size:
M elements
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• O(sort(|E|) log2log2(B
|V |
|E|

)) [Munagala and Ranade 1999]

• Practical O(sort(N) log2(N/M)) [Agarwal et al. 2006] (batched union–find)

Connected components

• O(sort(N)) [Goodrich et al. 1993, Kumar & Ramos 2002]

• Practical O(sort(N)) [Agarwal et al. 2005]

Delaunay triangulation for computing a TIN DEM

I/O-efficient algorithms
Previous work

I/O: B
elements
at once

size:
M elements
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Our results

• Cleaning algorithm for MBES data

– Identifies both random, local and structural noise
– Theoretically I/O-efficient
– Practically efficient and implementable

• Connected component algorithm

– O(sort(N)) I/Os under a natural assumption
– Practically efficient and implementable
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Our cleaning algorithm

1. Perturb “xy-duplicate” points

2. Create Delaunay triangulation (→ TIN)

3. Add diagonals

4. Remove edges with z-difference > threshold

5. Find largest connected component

6. Remove all points not in largest component
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Our cleaning algorithm

1. Perturb “xy-duplicate” points

2. Create Delaunay triangulation (→ TIN)

3. Add diagonals

4. Remove edges with z-difference > threshold

5. Find largest connected component

6. Remove all points not in largest component

O(sort(N)) I/Os + connected components = O(sort(N) log logB) I/Os, or
O(sort(N)) I/Os under a practical assumption



9-1

Why it works
Data: StatoilHydro

fish



9-2

Why it works
Data: StatoilHydro

fish



9-3

Why it works

> threshold

Data: StatoilHydro
fish



9-4

Why it works

> threshold

Data: StatoilHydro
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Why it works

only kept with diagonals
removed with and without diagonals

not removed

Data: StatoilHydro
with vs. without diagonals
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Results
type-1 noise

Data: EIVA
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Results
type-3 noise

Data: StatoilHydro
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Some numbers

Manually removed: not auto. 0.4%
0.4%

13%
0.3%

18%
0.8%

Data: StatoilHydro, EIVA

Noise little some much
Threshold 5 cm 5 cm 35 cm

Not manual. removed: only auto.
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Some numbers

Manually removed: not auto. 0.4%
0.4%

13%
0.3%

18%
0.8%

Data: StatoilHydro, EIVA

Noise little some much
Threshold 5 cm 5 cm 35 cm

Not manual. removed: only auto.

removed by manual
cleaning

18%
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Some numbers

Manually removed: not auto. 0.4%
0.4%

13%
0.3%

18%
0.8%

Data: StatoilHydro, EIVA

Noise little some much
Threshold 5 cm 5 cm 35 cm

Not manual. removed: only auto.
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Conclusion, future work

◦ Open problem: find easier alternative to Delaunay triangulation
Requirements:

– Good connectivity
– Fast to compute

◦ Open problem: defining theoretical model of outlier noise

– Objective theoretical performance analysis
– Compare Delaunay triangulation with other neighbourhood graphs

Implemented in commercial product

Bye,
bye!
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Connected component algorithm

• Compute connected component labelling:
vertices have equal labels ⇔ they are in the same connected component

• Algorithm: two phases, sweeping over edge & vertex lists

– Down phase: augment some vertices with additional connectivity info.
– Up phase: compute final component labels

Assumption: edges intersecting sweep line always fit in main memory

• Total number of I/Os necessary: O(sort(N))
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