
1-1

Cleaning massive sonar point clouds

Lars Arge Kasper Green Larsen Thomas Mølhave Freek van Walderveen

Aarhus University Aarhus University Duke University Aarhus University

1-2

Seabed scanning
with echosounders

1-3

Seabed scanning
with echosounders

1-4

Seabed scanning
with echosounders

1-5

Seabed scanning
with echosounders

1-6

Seabed scanning
with echosounders

1-7

Seabed scanning
with echosounders

1-8

Seabed scanning
with echosounders

1-9

Seabed scanning
with echosounders

1-10

Seabed scanning
with echosounders

1-11

Seabed scanning
with echosounders

1-12

Seabed scanning
with echosounders

1-13

Seabed scanning
with echosounders

1-14

Seabed scanning
with echosounders

1-15

Seabed scanning
with echosounders

1-16

Seabed scanning
with echosounders

1-17

Seabed scanning
with echosounders

1-18

Seabed scanning
with echosounders

1-19

Seabed scanning
with echosounders

1-20

Seabed scanning
with echosounders

1-21

Seabed scanning
with echosounders

1-22

Seabed scanning
with echosounders

2.2 billion points / day

1-23

Seabed scanning
with echosounders

1-24

Seabed scanning
with echosounders

1-25

Seabed scanning
with echosounders

1-26

Seabed scanning
with echosounders

1-27

Seabed scanning
with echosounders

1-28

Seabed scanning
with echosounders

2-1

Real-world examples
Data: StatoilHydro

2-2

Real-world examples
Data: StatoilHydro

2-3

Real-world examples
Data: StatoilHydro

2-4

Real-world examples
Data: StatoilHydro

3-1

Noise types

1. Random spikes, possibly clustered

Data: StatoilHydro

3-2

Noise types

1. Random spikes, possibly clustered

Data: StatoilHydro

3-3

Noise types

1. Random spikes, possibly clustered

Data: StatoilHydro

3-4

Noise types

1. Random spikes, possibly clustered

2. Non-permanent physical objects (e.g. fish)

Data: StatoilHydro

3-5

Noise types

1. Random spikes, possibly clustered

2. Non-permanent physical objects (e.g. fish)

3. Structural noise

Data: StatoilHydro

3-6

Noise types

1. Random spikes, possibly clustered

2. Non-permanent physical objects (e.g. fish)

3. Structural noise

Data: StatoilHydro

Problem
Remove these types of noise from

massive point sets while
keeping features intact

4-1

Local-neighbourhood based

Previous work

4-2

Local-neighbourhood based

Previous work

4-3

Local-neighbourhood based

Previous work

4-4

Local-neighbourhood based

Previous work

4-5

Local-neighbourhood based

Previous work

E.g. CUBE [Calder & Mayer 2003], industry standard

• Place grid over points
• Estimate heights at grid nodes

– Stastical analysis of points in neighbourhood
• Remove points far away from estimated surface

4-6

Local-neighbourhood based

Previous work

→ Problems handling large clusters of noise and structural noise (types 2 and 3)

E.g. CUBE [Calder & Mayer 2003], industry standard

• Place grid over points
• Estimate heights at grid nodes

– Stastical analysis of points in neighbourhood
• Remove points far away from estimated surface

5-1

I/O-efficient algorithms

I/O model: analyze number of data transfers between internal and external memory

I/O:
B elements
at once

size:
M elements

5-2

I/O-efficient algorithms

I/O model: analyze number of data transfers between internal and external memory

• Scanning N elements:
Θ(scan(N)) = Θ(N/B) I/Os

I/O:
B elements
at once

size:
M elements

5-3

I/O-efficient algorithms

I/O model: analyze number of data transfers between internal and external memory

• Scanning N elements:
Θ(scan(N)) = Θ(N/B) I/Os

• Sorting N elements:
Θ(sort(N)) = Θ(N/B logM/BN/B) I/Os

I/O:
B elements
at once

size:
M elements

6-1

Delaunay triangulation for computing a TIN DEM

I/O-efficient algorithms
Previous work

I/O: B
elements
at once

size:
M elements

6-2

• O(sort(N)) [Goodrich et al. 1993, Kumar & Ramos 2002]

• Practical O(sort(N)) [Agarwal et al. 2005]

Delaunay triangulation for computing a TIN DEM

I/O-efficient algorithms
Previous work

I/O: B
elements
at once

size:
M elements

6-3

• O(sort(|E|) log2log2(B
|V |
|E|

)) [Munagala and Ranade 1999]

• Practical O(sort(N) log2(N/M)) [Agarwal et al. 2006] (batched union–find)

Connected components

• O(sort(N)) [Goodrich et al. 1993, Kumar & Ramos 2002]

• Practical O(sort(N)) [Agarwal et al. 2005]

Delaunay triangulation for computing a TIN DEM

I/O-efficient algorithms
Previous work

I/O: B
elements
at once

size:
M elements

7-1

Our results

• Cleaning algorithm for MBES data

– Identifies both random, local and structural noise
– Theoretically I/O-efficient
– Practically efficient and implementable

7-2

Our results

• Cleaning algorithm for MBES data

– Identifies both random, local and structural noise
– Theoretically I/O-efficient
– Practically efficient and implementable

• Connected component algorithm

– O(sort(N)) I/Os under a natural assumption
– Practically efficient and implementable

8-1

Our cleaning algorithm

1. Perturb “xy-duplicate” points

8-2

Our cleaning algorithm

1. Perturb “xy-duplicate” points

8-3

Our cleaning algorithm

1. Perturb “xy-duplicate” points

8-4

Our cleaning algorithm

1. Perturb “xy-duplicate” points

2. Create Delaunay triangulation (→ TIN)

8-5

Our cleaning algorithm

1. Perturb “xy-duplicate” points

2. Create Delaunay triangulation (→ TIN)

8-6

Our cleaning algorithm

1. Perturb “xy-duplicate” points

2. Create Delaunay triangulation (→ TIN)

8-7

Our cleaning algorithm

1. Perturb “xy-duplicate” points

2. Create Delaunay triangulation (→ TIN)

3. Add diagonals

8-8

Our cleaning algorithm

1. Perturb “xy-duplicate” points

2. Create Delaunay triangulation (→ TIN)

3. Add diagonals

8-9

Our cleaning algorithm

1. Perturb “xy-duplicate” points

2. Create Delaunay triangulation (→ TIN)

3. Add diagonals

8-10

Our cleaning algorithm

1. Perturb “xy-duplicate” points

2. Create Delaunay triangulation (→ TIN)

3. Add diagonals

4. Remove edges with z-difference > threshold

8-11

Our cleaning algorithm

1. Perturb “xy-duplicate” points

2. Create Delaunay triangulation (→ TIN)

3. Add diagonals

4. Remove edges with z-difference > threshold

8-12

Our cleaning algorithm

1. Perturb “xy-duplicate” points

2. Create Delaunay triangulation (→ TIN)

3. Add diagonals

4. Remove edges with z-difference > threshold

5. Find largest connected component

8-13

Our cleaning algorithm

1. Perturb “xy-duplicate” points

2. Create Delaunay triangulation (→ TIN)

3. Add diagonals

4. Remove edges with z-difference > threshold

5. Find largest connected component

6. Remove all points not in largest component

8-14

Our cleaning algorithm

1. Perturb “xy-duplicate” points

2. Create Delaunay triangulation (→ TIN)

3. Add diagonals

4. Remove edges with z-difference > threshold

5. Find largest connected component

6. Remove all points not in largest component

O(sort(N)) I/Os + connected components = O(sort(N) log logB) I/Os, or
O(sort(N)) I/Os under a practical assumption

9-1

Why it works
Data: StatoilHydro

fish

9-2

Why it works
Data: StatoilHydro

fish

9-3

Why it works

> threshold

Data: StatoilHydro
fish

9-4

Why it works

> threshold

Data: StatoilHydro
fish

9-5

Why it works
Data: StatoilHydro

no diagonals ⇒ pipeline disconnected

9-6

Why it works
Data: StatoilHydro

no diagonals ⇒ pipeline disconnected

9-7

Why it works

only kept with diagonals
removed with and without diagonals

not removed

Data: StatoilHydro
with vs. without diagonals

10-1

Results
type-1 noise

Data: EIVA

10-2

Results
type-1 noise

Data: EIVA

10-3

Results
Data: StatoilHydro

type-2 noise

10-4

Results
Data: StatoilHydro

type-2 noise

10-5

Results
Data: StatoilHydro

type-3 noise

10-6

Results
Data: StatoilHydro

type-3 noise

10-7

Results
type-3 noise

Data: StatoilHydro

11-1

Some numbers

Manually removed: not auto. 0.4%
0.4%

13%
0.3%

18%
0.8%

Data: StatoilHydro, EIVA

Noise little some much
Threshold 5 cm 5 cm 35 cm

Not manual. removed: only auto.

11-2

Some numbers

Manually removed: not auto. 0.4%
0.4%

13%
0.3%

18%
0.8%

Data: StatoilHydro, EIVA

Noise little some much
Threshold 5 cm 5 cm 35 cm

Not manual. removed: only auto.

removed by manual
cleaning

18%

11-3

Some numbers

Manually removed: not auto. 0.4%
0.4%

13%
0.3%

18%
0.8%

Data: StatoilHydro, EIVA

Noise little some much
Threshold 5 cm 5 cm 35 cm

Not manual. removed: only auto.

12-1

Conclusion, future work

Implemented in commercial product

12-2

Conclusion, future work

◦ Open problem: defining theoretical model of outlier noise

– Objective theoretical performance analysis
– Compare Delaunay triangulation with other neighbourhood graphs

Implemented in commercial product

12-3

Conclusion, future work

◦ Open problem: find easier alternative to Delaunay triangulation
Requirements:

– Good connectivity
– Fast to compute

◦ Open problem: defining theoretical model of outlier noise

– Objective theoretical performance analysis
– Compare Delaunay triangulation with other neighbourhood graphs

Implemented in commercial product

12-4

Conclusion, future work

◦ Open problem: find easier alternative to Delaunay triangulation
Requirements:

– Good connectivity
– Fast to compute

◦ Open problem: defining theoretical model of outlier noise

– Objective theoretical performance analysis
– Compare Delaunay triangulation with other neighbourhood graphs

Implemented in commercial product

Bye,
bye!

13-1

14-1

Connected component algorithm

• Compute connected component labelling:
vertices have equal labels ⇔ they are in the same connected component

14-2

Connected component algorithm

• Compute connected component labelling:
vertices have equal labels ⇔ they are in the same connected component

• Algorithm: two phases, sweeping over edge & vertex lists

– Down phase: augment some vertices with additional connectivity info.
– Up phase: compute final component labels

Assumption: edges intersecting sweep line always fit in main memory

14-3

Connected component algorithm

• Compute connected component labelling:
vertices have equal labels ⇔ they are in the same connected component

• Algorithm: two phases, sweeping over edge & vertex lists

– Down phase: augment some vertices with additional connectivity info.
– Up phase: compute final component labels

Assumption: edges intersecting sweep line always fit in main memory

• Total number of I/Os necessary: O(sort(N))

15-1

Connected component algorithm
down phase

15-2

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

⇔
∃ path between them above or through sweep line

15-3

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

⇔
∃ path between them above or through sweep line

For each incident down-edge:

• Find label of other end-point, or create it

• Merge components

15-4

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

⇔
∃ path between them above or through sweep line

For each incident down-edge:

• Find label of other end-point, or create it

• Merge components

15-5

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

⇔
∃ path between them above or through sweep line

For each incident down-edge:

• Find label of other end-point, or create it

• Merge components

15-6

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

⇔
∃ path between them above or through sweep line

15-7

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

⇔
∃ path between them above or through sweep line

15-8

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

⇔
∃ path between them above or through sweep line

15-9

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

⇔
∃ path between them above or through sweep line

15-10

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

⇔
∃ path between them above or through sweep line

15-11

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

⇔
∃ path between them above or through sweep line

15-12

Connected component algorithm
down phase

Merge

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

⇔
∃ path between them above or through sweep line

15-13

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

⇔
∃ path between them above or through sweep line

15-14

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

⇔
∃ path between them above or through sweep line

15-15

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

⇔
∃ path between them above or through sweep line

15-16

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

⇔
∃ path between them above or through sweep line

15-17

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

⇔
∃ path between them above or through sweep line

15-18

Connected component algorithm
down phase

No lower neighbours: augment vertex
with vertex in same component

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

⇔
∃ path between them above or through sweep line

15-19

Connected component algorithm
down phase

No lower neighbours: augment vertex
with vertex in same component

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

⇔
∃ path between them above or through sweep line

15-20

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

⇔
∃ path between them above or through sweep line

15-21

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

⇔
∃ path between them above or through sweep line

15-22

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

⇔
∃ path between them above or through sweep line

15-23

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

⇔
∃ path between them above or through sweep line

15-24

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

⇔
∃ path between them above or through sweep line

15-25

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

⇔
∃ path between them above or through sweep line

16-1

Connected component algorithm
up phase

Invariant:
vertices with neighbour below sweep line have correct label

16-2

Connected component algorithm
up phase

Invariant:
vertices with neighbour below sweep line have correct label

16-3

Connected component algorithm
up phase

Invariant:
vertices with neighbour below sweep line have correct label

16-4

Connected component algorithm
up phase

Invariant:
vertices with neighbour below sweep line have correct label

16-5

Connected component algorithm
up phase

Invariant:
vertices with neighbour below sweep line have correct label

16-6

Connected component algorithm
up phase

Invariant:
vertices with neighbour below sweep line have correct label

