Constructability

of
 Trip-lets

Eindhoven University of Technology, the Netherlands
*Now at MADALGO, University of Aarhus, Denmark

Trip-lets

'Trip-let' is the name which I have given to blocks shaped in such a way that their shadows in three orthogonal dimensions are three different letters.

Trip-lets

'Trip-let' is the name which I have given to blocks shaped in such a way that their shadows in three orthogonal dimensions are three different letters.

Conversely:
construction for three given letters (shapes) by removing from a cube all material obstructing the shadows' negatives.

Trip-lets

'Trip-let' is the name which I have given to blocks shaped in such a way that their shadows in three orthogonal dimensions are three different letters.

Conversely:
construction for three given letters (shapes) by removing from a cube all material obstructing the shadows' negatives.

Is this always possible?

Or are there combinations of letters for which it does not work out?

Trip-lets

'Trip-let' is the name which I have given to blocks shaped in such a way that their shadows in three orthogonal dimensions are three different letters.

Conversely:
construction for three given letters (shapes) by removing from a cube all material obstructing the shadows' negatives.

Is this always possible?

Or are there combinations of letters for which it does not work out?

Trip-lets

'Trip-let' is the name which I have given to blocks shaped in such a way that their shadows in three orthogonal dimensions are three different letters.

Conversely:
construction for three given letters (shapes) by removing from a cube all material obstructing the shadows' negatives.

Is this always possible?

Or are there combinations of letters for which it does not work out?

Trip-lets

'Trip-let' is the name which I have given to blocks shaped in such a way that their shadows in three orthogonal dimensions are three different letters.

Conversely:
construction for three given letters (shapes) by removing from a cube all material obstructing the shadows' negatives.

Is this always possible?

Or are there combinations of letters for which it does not work out?

Trip-lets

'Trip-let' is the name which I have given to blocks shaped in such a way that their shadows in three orthogonal dimensions are three different letters.

Conversely:
construction for three given letters (shapes) by removing from a cube all material obstructing the shadows' negatives.

Is this always possible?

Or are there combinations of letters for which it does not work out?

Trip-lets

'Trip-let' is the name which I have given to blocks shaped in such a way that their shadows in three orthogonal dimensions are three different letters.

Conversely:
construction for three given letters (shapes) by removing from a cube all material obstructing the shadows' negatives.

Is this always possible? No!
Or are there combinations of letters for which it does not work out?

Trip-lets

'Trip-let' is the name which I have given to blocks shaped in such a way that their shadows in three orthogonal dimensions are three different letters.

Conversely:
construction for three given letters (shapes) by removing from a cube all material obstructing the shadows' negatives.

Question 1:

For which shapes is this possible?

Trip-lets

Trip-lets

Trip-lets

Trip-lets

Trip-lets

Trip-lets

Trip-lets

Overview

Given three polygonal shapes with n vertices in total.

- How many vertices can a trip-let have?
- How many vertices can its shadows have?
- How fast can we find out whether a trip-let can be made? (Q1)
- How fast can we find out whether the trip-let is connected? (Q2)

Overview

Given three polygonal shapes with n vertices in total.

- How many vertices can a trip-let have?
- How many vertices can its shadows have?
- How fast can we find out whether a trip-let can be made? (Q1)
- How fast can we find out whether the trip-let is connected? (Q2)

Earlier work

- Q1 and Q2 posed by O'Rourke at SCG'98

Overview

Given three polygonal shapes with n vertices in total.

- How many vertices can a trip-let have?
- How many vertices can its shadows have?
- How fast can we find out whether a trip-let can be made? (Q1)
- How fast can we find out whether the trip-let is connected? (Q2)

Earlier work

- Q1 and Q2 posed by O'Rourke at SCG'98
- Related work: e.g. finding possible viewpoints in the plane for given shadows [Bottino and Laurentini 2003], [Ohgami and Sugihara 2008 (EuroCG)]

Overview

Given three polygonal shapes with n vertices in total.

- How many vertices can a trip-let have?
- How many vertices can its shadows have?
- How fast can we find out whether a trip-let can be made? (Q1)
- How fast can we find out whether the trip-let is connected? (Q2)

Earlier work

- Q1 and Q2 posed by O'Rourke at SCG'98
- Related work: e.g. finding possible viewpoints in the plane for given shadows [Bottino and Laurentini 2003], [Ohgami and Sugihara 2008 (EuroCG)]
- Intersecting 3D Nef polyhedra [Hachenberger et al. 2007]:
trip-let construction in $O\left(n^{4} \log n\right)$ time, expected

Trip-let complexity

Given three polygonal shapes with n vertices in total, how many vertices can a corresponding trip-let have?

Trip-let complexity

Given three polygonal shapes with n vertices in total, how many vertices can a corresponding trip-let have?

- \Rightarrow lower bound on running time for constructive algorithms

Trip-let complexity

Given three polygonal shapes with n vertices in total, how many vertices can a corresponding trip-let have?

- \Rightarrow lower bound on running time for constructive algorithms
- $\Theta\left(n^{3}\right)$ in the worst case

Trip-let complexity

Given three polygonal shapes with n vertices in total, how many vertices can a corresponding trip-let have?

- \Rightarrow lower bound on running time for constructive algorithms
- $\Theta\left(n^{3}\right)$ in the worst case

What about connected trip-lets?

Trip-let complexity

Given three polygonal shapes with n vertices in total, how many vertices can a corresponding trip-let have?

- \Rightarrow lower bound on running time for constructive algorithms
- $\Theta\left(n^{3}\right)$ in the worst case

What about connected trip-lets?

- $\Omega\left(\mathrm{n}^{2}\right)$ is possible;

Trip-let complexity

Given three polygonal shapes with \mathfrak{n} vertices in total, how many vertices can a corresponding trip-let have?

- \Rightarrow lower bound on running time for constructive algorithms
- $\Theta\left(n^{3}\right)$ in the worst case

What about connected trip-lets?

- $\Omega\left(\mathrm{n}^{2}\right)$ is possible;
- but can it get any worse? (we don't think so)

Shadow complexity

Given three polygonal shapes with n vertices in total, how many vertices can a trip-let's shadows have?

Shadow complexity

Given three polygonal shapes with n vertices in total, how many vertices can a trip-let's shadows have?

- \Rightarrow lower bound on running time for constructive algorithms verifying shadows

Shadow complexity

Given three polygonal shapes with n vertices in total, how many vertices can a trip-let's shadows have?

- \Rightarrow lower bound on running time for constructive algorithms verifying shadows
- slanted vertical strips in first shape; horizontal strips in second shape $\Rightarrow \Theta\left(\mathrm{n}^{2}\right)$ parallel strips in shadow

Shadow complexity

Given three polygonal shapes with n vertices in total, how many vertices can a trip-let's shadows have?

- \Rightarrow lower bound on running time for constructive algorithms verifying shadows
- slanted vertical strips in first shape; horizontal strips in second shape $\Rightarrow \Theta\left(\mathrm{n}^{2}\right)$ parallel strips in shadow

Shadow complexity

Given three polygonal shapes with n vertices in total, how many vertices can a trip-let's shadows have?

- \Rightarrow lower bound on running time for constructive algorithms verifying shadows
- slanted vertical strips in first shape; horizontal strips in second shape $\Rightarrow \Theta\left(\mathrm{n}^{2}\right)$ parallel strips in shadow
- copy \& rotate \Rightarrow grid with $\Theta\left(\mathrm{n}^{4}\right)$ holes

Shadow complexity

Given three polygonal shapes with n vertices in total, how many vertices can a trip-let's shadows have?

- \Rightarrow lower bound on running time for constructive algorithms verifying shadows
- slanted vertical strips in first shape; horizontal strips in second shape $\Rightarrow \Theta\left(\mathrm{n}^{2}\right)$ parallel strips in shadow
- copy \& rotate \Rightarrow grid with $\Theta\left(\mathrm{n}^{4}\right)$ holes

- For rectilinear shapes, complexity is only $\Theta\left(\mathfrak{n}^{2}\right)$ in the worst case.

Determining validity (Question 1)

Given three polygonal shapes with n vertices in total, does a trip-let exist for these shapes?

Determining validity (Question 1)

Given three polygonal shapes with n vertices in total, does a trip-let exist for these shapes?

- Constructive algorithm: general polygons \Rightarrow running time $\Omega\left(\mathrm{n}^{4}\right)$. We only consider rectilinear polygons.

Determining validity (Question 1)

Given three polygonal shapes with n vertices in total, does a trip-let exist for these shapes?

- Constructive algorithm: general polygons \Rightarrow running time $\Omega\left(\mathrm{n}^{4}\right)$. We only consider rectilinear polygons.
- Check each of the three shadows separately.

Determining validity (Question 1)

Given three polygonal shapes with n vertices in total, does a trip-let exist for these shapes?

- Constructive algorithm: general polygons \Rightarrow running time $\Omega\left(\mathrm{n}^{4}\right)$. We only consider rectilinear polygons.
- Check each of the three shadows separately.
- Use a sweep-plane algorithm to get a set of rectangles covering a shape.

Determining validity (Question 1)

Given three polygonal shapes with n vertices in total, does a trip-let exist for these shapes?

- Constructive algorithm: general polygons \Rightarrow running time $\Omega\left(\mathrm{n}^{4}\right)$. We only consider rectilinear polygons.
- Check each of the three shadows separately.
- Use a sweep-plane algorithm to get a set of rectangles covering a shape.

Determining validity (Question 1)

Given three polygonal shapes with n vertices in total, does a trip-let exist for these shapes?

- Constructive algorithm: general polygons \Rightarrow running time $\Omega\left(\mathrm{n}^{4}\right)$. We only consider rectilinear polygons.
- Check each of the three shadows separately.
- Use a sweep-plane algorithm to get a set of rectangles covering a shape.

Determining validity (Question 1)

Given three polygonal shapes with n vertices in total, does a trip-let exist for these shapes?

- Constructive algorithm: general polygons \Rightarrow running time $\Omega\left(\mathrm{n}^{4}\right)$. We only consider rectilinear polygons.
- Check each of the three shadows separately.
- Use a sweep-plane algorithm to get a set of rectangles covering a shape.

Determining validity (Question 1)

Given three polygonal shapes with n vertices in total, does a trip-let exist for these shapes?

- Constructive algorithm: general polygons \Rightarrow running time $\Omega\left(\mathrm{n}^{4}\right)$. We only consider rectilinear polygons.
- Check each of the three shadows separately.
- Use a sweep-plane algorithm to get a set of rectangles covering a shape.

Determining validity (Question 1)

Given three polygonal shapes with n vertices in total, does a trip-let exist for these shapes?

- Constructive algorithm: general polygons \Rightarrow running time $\Omega\left(\mathrm{n}^{4}\right)$. We only consider rectilinear polygons.
- Check each of the three shadows separately.
- Use a sweep-plane algorithm to get a set of rectangles covering a shape.

Determining validity (Question 1)

Given three polygonal shapes with n vertices in total, does a trip-let exist for these shapes?

- Constructive algorithm: general polygons \Rightarrow running time $\Omega\left(\mathrm{n}^{4}\right)$. We only consider rectilinear polygons.
- Check each of the three shadows separately.
- Use a sweep-plane algorithm to get a set of rectangles covering a shape.

Determining validity (Question 1)

Given three polygonal shapes with n vertices in total, does a trip-let exist for these shapes?

- Constructive algorithm: general polygons \Rightarrow running time $\Omega\left(\mathrm{n}^{4}\right)$. We only consider rectilinear polygons.
- Check each of the three shadows separately.
- Use a sweep-plane algorithm to get a set of rectangles covering a shape.

Determining validity (Question 1)

Given three polygonal shapes with n vertices in total, does a trip-let exist for these shapes?

- Constructive algorithm: general polygons \Rightarrow running time $\Omega\left(\mathrm{n}^{4}\right)$. We only consider rectilinear polygons.
- Check each of the three shadows separately.
- Use a sweep-plane algorithm to get a set of rectangles covering a shape.
- Take union of rectangle set (size: $\mathrm{O}\left(\mathrm{n}^{2}\right)$), and compare shadow to shape. How to do this efficiently?

Determining validity (Question 1)

Given three polygonal shapes with n vertices in total, does a trip-let exist for these shapes?

- Constructive algorithm: general polygons \Rightarrow running time $\Omega\left(\mathrm{n}^{4}\right)$. We only consider rectilinear polygons.
- Check each of the three shadows separately.
- Use a sweep-plane algorithm to get a set of rectangles covering a shape.
- Take union of rectangle set (size: $\mathrm{O}\left(\mathrm{n}^{2}\right)$), and compare shadow to shape.

How to do this efficiently?

- Sweep-line algorithm.
- Extended segment-tree as status structure.

Determining validity (Question 1)

Given three polygonal shapes with n vertices in total, does a trip-let exist for these shapes?

- Constructive algorithm: general polygons \Rightarrow running time $\Omega\left(\mathrm{n}^{4}\right)$. We only consider rectilinear polygons.
- Check each of the three shadows separately.
- Use a sweep-plane algorithm to get a set of rectangles covering a shape.
- Take union of rectangle set (size: $\mathrm{O}\left(\mathrm{n}^{2}\right)$), and compare shadow to shape. How to do this efficiently?
- Sweep-line algorithm.
- Extended segment-tree as status structure.

- Algorithm runs in $\mathrm{O}\left(\mathrm{n}^{2} \log n\right)$ time.

Determining connectedness (Question 2)

Given three polygonal shapes with n vertices in total, can a corresponding trip-let be connected?

Determining connectedness (Question 2)

Given three polygonal shapes with n vertices in total, can a corresponding trip-let be connected?

- Goal: running time $\approx \mathrm{O}(\mathrm{k})$, with k the number of vertices of the trip-let.

Determining connectedness (Question 2)

Given three polygonal shapes with n vertices in total, can a corresponding trip-let be connected?

- Goal: running time $\approx \mathrm{O}(\mathrm{k})$, with k the number of vertices of the trip-let.
- Sweep-plane algorithm keeping track of connected components in object.

Determining connectedness (Question 2)

Given three polygonal shapes with n vertices in total, can a corresponding trip-let be connected?

- Goal: running time $\approx \mathrm{O}(\mathrm{k})$, with k the number of vertices of the trip-let.
- Sweep-plane algorithm keeping track of connected components in object.
- Running time: $\mathrm{O}\left(\left(n^{2}+k\right) \log n\right)$

Open problems

- Our algorithms only work for rectilinear shapes;

3D Nef algorithm of Hachenberger et al. works for general polygons; what about "smooth" closed curves as used in characters?

Open problems

- Our algorithms only work for rectilinear shapes;

3D Nef algorithm of Hachenberger et al. works for general polygons; what about "smooth" closed curves as used in characters?

- We know connected trip-lets have worst-case complexity $\Omega\left(n^{2}\right)$ and $O\left(n^{3}\right)$. Does there exist any connected trip-let with $\omega\left(\mathrm{n}^{2}\right)$ vertices?

Open problems

- Our algorithms only work for rectilinear shapes; 3D Nef algorithm of Hachenberger et al. works for general polygons; what about "smooth" closed curves as used in characters?
- We know connected trip-lets have worst-case complexity $\Omega\left(n^{2}\right)$ and $O\left(n^{3}\right)$. Does there exist any connected trip-let with $\omega\left(\mathrm{n}^{2}\right)$ vertices?
- Our algorithms are almost worst-case optimal for actually constructing the objects and their shadows;

What about non-constructive algorithms?
That is, can an algorithm be faster than $\mathrm{O}\left(\mathrm{n}^{2}\right)$ in the worst-case?

