
Introduction

Constructability
of

Trip-lets

Eindhoven University of Technology, the Netherlands

?Now at MADALGO, University of Aarhus, Denmark

Jeroen Keiren Freek van Walderveen? Alexander Wolff



Trip-lets

“ ‘Trip-let’ is the name which I have given
to blocks shaped in such a way that
their shadows in three orthogonal

dimensions are three different letters.

”

Trip-lets



Trip-lets

“ ‘Trip-let’ is the name which I have given
to blocks shaped in such a way that
their shadows in three orthogonal

dimensions are three different letters.

”

Trip-lets

Conversely:
construction for three given letters (shapes) by
removing from a cube all material obstructing
the shadows’ negatives.



Trip-lets

“ ‘Trip-let’ is the name which I have given
to blocks shaped in such a way that
their shadows in three orthogonal

dimensions are three different letters.

”

Trip-lets

Conversely:
construction for three given letters (shapes) by
removing from a cube all material obstructing
the shadows’ negatives.

Is this always possible?
Or are there combinations of letters for

which it does not work out?



Trip-lets

“ ‘Trip-let’ is the name which I have given
to blocks shaped in such a way that
their shadows in three orthogonal

dimensions are three different letters.

”

Trip-lets

Conversely:
construction for three given letters (shapes) by
removing from a cube all material obstructing
the shadows’ negatives.

Is this always possible?
Or are there combinations of letters for

which it does not work out?



Trip-lets

“ ‘Trip-let’ is the name which I have given
to blocks shaped in such a way that
their shadows in three orthogonal

dimensions are three different letters.

”

Trip-lets

Conversely:
construction for three given letters (shapes) by
removing from a cube all material obstructing
the shadows’ negatives.

Is this always possible?
Or are there combinations of letters for

which it does not work out?



Trip-lets

“ ‘Trip-let’ is the name which I have given
to blocks shaped in such a way that
their shadows in three orthogonal

dimensions are three different letters.

”

Trip-lets

Conversely:
construction for three given letters (shapes) by
removing from a cube all material obstructing
the shadows’ negatives.

Is this always possible?
Or are there combinations of letters for

which it does not work out?



Trip-lets

“ ‘Trip-let’ is the name which I have given
to blocks shaped in such a way that
their shadows in three orthogonal

dimensions are three different letters.

”

Trip-lets

Conversely:
construction for three given letters (shapes) by
removing from a cube all material obstructing
the shadows’ negatives.

Is this always possible?
Or are there combinations of letters for

which it does not work out?



Trip-lets

“ ‘Trip-let’ is the name which I have given
to blocks shaped in such a way that
their shadows in three orthogonal

dimensions are three different letters.

”

Trip-lets

Conversely:
construction for three given letters (shapes) by
removing from a cube all material obstructing
the shadows’ negatives.

Is this always possible?
Or are there combinations of letters for

which it does not work out?

No!



Trip-lets

“ ‘Trip-let’ is the name which I have given
to blocks shaped in such a way that
their shadows in three orthogonal

dimensions are three different letters.

”

Trip-lets

Conversely:
construction for three given letters (shapes) by
removing from a cube all material obstructing
the shadows’ negatives.

Is this always possible?
Or are there combinations of letters for

which it does not work out?

No!
Question 1:

For which shapes is this possible?



Trip-lets
a second example



Trip-lets
a second example



Trip-lets
a second example



Trip-lets
a second example



Trip-lets
a second example



Trip-lets
a second example



Trip-lets
a second example



Trip-lets
a second example



Trip-lets
a second example

Question 2:
Which trip-lets are connected?



Overview

Overview

• How many vertices can its shadows have?

• How fast can we find out whether a trip-let can be made? (Q1)

Given three polygonal shapes with n vertices in total.

• How many vertices can a trip-let have?

• How fast can we find out whether the trip-let is connected? (Q2)



Overview

Overview

• How many vertices can its shadows have?

• How fast can we find out whether a trip-let can be made? (Q1)

Given three polygonal shapes with n vertices in total.

• How many vertices can a trip-let have?

• How fast can we find out whether the trip-let is connected? (Q2)

Earlier work

• Q1 and Q2 posed by O’Rourke at SCG’98



Overview

Overview

• How many vertices can its shadows have?

• How fast can we find out whether a trip-let can be made? (Q1)

Given three polygonal shapes with n vertices in total.

• How many vertices can a trip-let have?

• How fast can we find out whether the trip-let is connected? (Q2)

Earlier work

• Q1 and Q2 posed by O’Rourke at SCG’98

• Related work: e.g. finding possible viewpoints in the plane for given shadows
[Bottino and Laurentini 2003], [Ohgami and Sugihara 2008 (EuroCG)]



Overview

Overview

• How many vertices can its shadows have?

• How fast can we find out whether a trip-let can be made? (Q1)

Given three polygonal shapes with n vertices in total.

• How many vertices can a trip-let have?

• How fast can we find out whether the trip-let is connected? (Q2)

Earlier work

• Q1 and Q2 posed by O’Rourke at SCG’98

• Related work: e.g. finding possible viewpoints in the plane for given shadows
[Bottino and Laurentini 2003], [Ohgami and Sugihara 2008 (EuroCG)]

• Intersecting 3D Nef polyhedra [Hachenberger et al. 2007]:
trip-let construction in O(n4 logn) time, expected



Trip-let complexity

Trip-let complexity

Given three polygonal shapes with n vertices in total,
how many vertices can a corresponding trip-let have?



Trip-let complexity

Trip-let complexity

Given three polygonal shapes with n vertices in total,
how many vertices can a corresponding trip-let have?

• ⇒ lower bound on running time for constructive algorithms



Trip-let complexity

Trip-let complexity

Given three polygonal shapes with n vertices in total,
how many vertices can a corresponding trip-let have?

• ⇒ lower bound on running time for constructive algorithms

• Θ(n3) in the worst case



Trip-let complexity

Trip-let complexity

Given three polygonal shapes with n vertices in total,
how many vertices can a corresponding trip-let have?

• ⇒ lower bound on running time for constructive algorithms

• Θ(n3) in the worst case

What about connected trip-lets?



Trip-let complexity

Trip-let complexity

Given three polygonal shapes with n vertices in total,
how many vertices can a corresponding trip-let have?

• ⇒ lower bound on running time for constructive algorithms

What about connected trip-lets?

• Ω(n2) is possible;

• Θ(n3) in the worst case



Trip-let complexity

Trip-let complexity

Given three polygonal shapes with n vertices in total,
how many vertices can a corresponding trip-let have?

• ⇒ lower bound on running time for constructive algorithms

What about connected trip-lets?

• Ω(n2) is possible;

• Θ(n3) in the worst case

• but can it get any worse?
(we don’t think so)



Shadow complexity

Shadow complexity

Given three polygonal shapes with n vertices in total,
how many vertices can a trip-let’s shadows have?



Shadow complexity

Shadow complexity

Given three polygonal shapes with n vertices in total,
how many vertices can a trip-let’s shadows have?

• ⇒ lower bound on running time for constructive algorithms verifying shadows



Shadow complexity

Shadow complexity

Given three polygonal shapes with n vertices in total,
how many vertices can a trip-let’s shadows have?

• ⇒ lower bound on running time for constructive algorithms verifying shadows

• slanted vertical strips in first shape;
horizontal strips in second shape
⇒ Θ(n2) parallel strips in shadow



Shadow complexity

Shadow complexity

Given three polygonal shapes with n vertices in total,
how many vertices can a trip-let’s shadows have?

• ⇒ lower bound on running time for constructive algorithms verifying shadows

• slanted vertical strips in first shape;
horizontal strips in second shape
⇒ Θ(n2) parallel strips in shadow



Shadow complexity

Shadow complexity

Given three polygonal shapes with n vertices in total,
how many vertices can a trip-let’s shadows have?

• ⇒ lower bound on running time for constructive algorithms verifying shadows

• copy & rotate
⇒ grid with Θ(n4) holes

• slanted vertical strips in first shape;
horizontal strips in second shape
⇒ Θ(n2) parallel strips in shadow



Shadow complexity

Shadow complexity

Given three polygonal shapes with n vertices in total,
how many vertices can a trip-let’s shadows have?

• ⇒ lower bound on running time for constructive algorithms verifying shadows

• For rectilinear shapes, complexity is only Θ(n2) in the worst case.

• copy & rotate
⇒ grid with Θ(n4) holes

• slanted vertical strips in first shape;
horizontal strips in second shape
⇒ Θ(n2) parallel strips in shadow



Determining validity

Determining validity (Question 1)

Given three polygonal shapes with n vertices in total,
does a trip-let exist for these shapes?



Determining validity

Determining validity (Question 1)

Given three polygonal shapes with n vertices in total,
does a trip-let exist for these shapes?

• Constructive algorithm: general polygons ⇒ running time Ω(n4).

We only consider rectilinear polygons.



Determining validity

Determining validity (Question 1)

Given three polygonal shapes with n vertices in total,
does a trip-let exist for these shapes?

• Constructive algorithm: general polygons ⇒ running time Ω(n4).

We only consider rectilinear polygons.

• Check each of the three shadows separately.



Determining validity

Determining validity (Question 1)

Given three polygonal shapes with n vertices in total,
does a trip-let exist for these shapes?

• Constructive algorithm: general polygons ⇒ running time Ω(n4).

We only consider rectilinear polygons.

• Check each of the three shadows separately.

• Use a sweep-plane algorithm to get a set of rectangles covering a shape.



Determining validity

Determining validity (Question 1)

Given three polygonal shapes with n vertices in total,
does a trip-let exist for these shapes?

• Constructive algorithm: general polygons ⇒ running time Ω(n4).

We only consider rectilinear polygons.

• Check each of the three shadows separately.

• Use a sweep-plane algorithm to get a set of rectangles covering a shape.



Determining validity

Determining validity (Question 1)

Given three polygonal shapes with n vertices in total,
does a trip-let exist for these shapes?

• Constructive algorithm: general polygons ⇒ running time Ω(n4).

We only consider rectilinear polygons.

• Check each of the three shadows separately.

• Use a sweep-plane algorithm to get a set of rectangles covering a shape.



Determining validity

Determining validity (Question 1)

Given three polygonal shapes with n vertices in total,
does a trip-let exist for these shapes?

• Constructive algorithm: general polygons ⇒ running time Ω(n4).

We only consider rectilinear polygons.

• Check each of the three shadows separately.

• Use a sweep-plane algorithm to get a set of rectangles covering a shape.



Determining validity

Determining validity (Question 1)

Given three polygonal shapes with n vertices in total,
does a trip-let exist for these shapes?

• Constructive algorithm: general polygons ⇒ running time Ω(n4).

We only consider rectilinear polygons.

• Check each of the three shadows separately.

• Use a sweep-plane algorithm to get a set of rectangles covering a shape.



Determining validity

Determining validity (Question 1)

Given three polygonal shapes with n vertices in total,
does a trip-let exist for these shapes?

• Constructive algorithm: general polygons ⇒ running time Ω(n4).

We only consider rectilinear polygons.

• Check each of the three shadows separately.

• Use a sweep-plane algorithm to get a set of rectangles covering a shape.



Determining validity

Determining validity (Question 1)

Given three polygonal shapes with n vertices in total,
does a trip-let exist for these shapes?

• Constructive algorithm: general polygons ⇒ running time Ω(n4).

We only consider rectilinear polygons.

• Check each of the three shadows separately.

• Use a sweep-plane algorithm to get a set of rectangles covering a shape.



Determining validity

Determining validity (Question 1)

Given three polygonal shapes with n vertices in total,
does a trip-let exist for these shapes?

• Constructive algorithm: general polygons ⇒ running time Ω(n4).

We only consider rectilinear polygons.

• Check each of the three shadows separately.

• Use a sweep-plane algorithm to get a set of rectangles covering a shape.



Determining validity

Determining validity (Question 1)

Given three polygonal shapes with n vertices in total,
does a trip-let exist for these shapes?

• Constructive algorithm: general polygons ⇒ running time Ω(n4).

We only consider rectilinear polygons.

• Check each of the three shadows separately.

• Use a sweep-plane algorithm to get a set of rectangles covering a shape.

• Take union of rectangle set (size: O(n2)), and compare shadow to shape.

How to do this efficiently?

– Sweep-line algorithm.

– Extended segment-tree as status structure.



Determining validity

Determining validity (Question 1)

Given three polygonal shapes with n vertices in total,
does a trip-let exist for these shapes?

• Constructive algorithm: general polygons ⇒ running time Ω(n4).

We only consider rectilinear polygons.

• Check each of the three shadows separately.

• Use a sweep-plane algorithm to get a set of rectangles covering a shape.

• Take union of rectangle set (size: O(n2)), and compare shadow to shape.

How to do this efficiently?

– Sweep-line algorithm.

– Extended segment-tree as status structure.



Determining validity

Determining validity (Question 1)

Given three polygonal shapes with n vertices in total,
does a trip-let exist for these shapes?

• Constructive algorithm: general polygons ⇒ running time Ω(n4).

We only consider rectilinear polygons.

• Check each of the three shadows separately.

• Use a sweep-plane algorithm to get a set of rectangles covering a shape.

• Take union of rectangle set (size: O(n2)), and compare shadow to shape.

How to do this efficiently?

– Sweep-line algorithm.

– Extended segment-tree as status structure.

• Algorithm runs in O(n2 logn) time.



Determining connectedness

Determining connectedness (Question 2)

Given three polygonal shapes with n vertices in total,
can a corresponding trip-let be connected?



Determining connectedness

Determining connectedness (Question 2)

Given three polygonal shapes with n vertices in total,
can a corresponding trip-let be connected?

• Goal: running time ≈ O(k), with k the number of vertices of the trip-let.



Determining connectedness

Determining connectedness (Question 2)

Given three polygonal shapes with n vertices in total,
can a corresponding trip-let be connected?

• Goal: running time ≈ O(k), with k the number of vertices of the trip-let.

• Sweep-plane algorithm keeping track of connected components in object.



Determining connectedness

Determining connectedness (Question 2)

Given three polygonal shapes with n vertices in total,
can a corresponding trip-let be connected?

• Goal: running time ≈ O(k), with k the number of vertices of the trip-let.

• Sweep-plane algorithm keeping track of connected components in object.

• Running time: O((n2 + k) logn)



Open problems

• Our algorithms only work for rectilinear shapes;

3D Nef algorithm of Hachenberger et al. works for general polygons;

what about “smooth” closed curves as used in characters?



Open problems

• Our algorithms only work for rectilinear shapes;

3D Nef algorithm of Hachenberger et al. works for general polygons;

what about “smooth” closed curves as used in characters?

• We know connected trip-lets have worst-case complexity Ω(n2) and O(n3).

Does there exist any connected trip-let with ω(n2) vertices?



Open problems

• Our algorithms only work for rectilinear shapes;

3D Nef algorithm of Hachenberger et al. works for general polygons;

what about “smooth” closed curves as used in characters?

• We know connected trip-lets have worst-case complexity Ω(n2) and O(n3).

Does there exist any connected trip-let with ω(n2) vertices?

• Our algorithms are almost worst-case optimal for actually constructing the
objects and their shadows;

What about non-constructive algorithms?

That is, can an algorithm be faster than O(n2) in the worst-case?


	Introduction
	Trip-lets
	Overview
	Trip-let complexity
	Shadow complexity
	Determining validity
	Determining connectedness

