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Diameter of a point set
Use classical rotating calipers algorithm around convex hull

O(n logn) known to be
optimal in algebraic

computation tree model
by reduction from
set disjointness
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• Range diameter query [Gupta et al. 2009]:
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Quadratic space
necessary for

polylog query time?

on non-decomposable geometric range aggregate queries
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Outline

• Reduction from set intersection to range diameter
→ strong evidence for hardness

• Data structure for range diameter queries on points in
convex position:
O(n logn) space, O(logn) query time

What about special cases?



Why range diameter is hard
A reduction from set intersection

Set intersection problem
• Input: m sets of positive real numbers S1,. . . ,Sm
• Query: Si ∩ Sj = ∅? n =
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Set intersection problem
• Input: m sets of positive real numbers S1,. . . ,Sm
• Query: Si ∩ Sj = ∅? n =

∑
i |Si|

S1
S2
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Sj
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Sm

Conjecture:
polylog query time ⇒
almost quadratic space
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ri = 2i



Si

Why range diameter is hard
A reduction from set intersection

Set intersection problem
• Input: m sets of positive real numbers S1,. . . ,Sm
• Query: Si ∩ Sj = ∅? n =

∑
i |Si|

a

y = a · x



Si

Why range diameter is hard
A reduction from set intersection

Set intersection problem
• Input: m sets of positive real numbers S1,. . . ,Sm
• Query: Si ∩ Sj = ∅? n =

∑
i |Si|



Si

Sj

Why range diameter is hard
A reduction from set intersection

Set intersection problem
• Input: m sets of positive real numbers S1,. . . ,Sm
• Query: Si ∩ Sj = ∅? n =

∑
i |Si|



Si

Sj

Why range diameter is hard
A reduction from set intersection

Set intersection problem
• Input: m sets of positive real numbers S1,. . . ,Sm
• Query: Si ∩ Sj = ∅? n =

∑
i |Si|



Si

Sj

Why range diameter is hard
A reduction from set intersection

Set intersection problem
• Input: m sets of positive real numbers S1,. . . ,Sm
• Query: Si ∩ Sj = ∅? n =

∑
i |Si|

ri rj

r i
+
r j



Si

Sj

Why range diameter is hard
A reduction from set intersection

Set intersection problem
• Input: m sets of positive real numbers S1,. . . ,Sm
• Query: Si ∩ Sj = ∅? n =

∑
i |Si|

ri rj

r i
+
r jSet intersection conjectures:

• O(1) query ⇒
Ω̃(m2) space

• O(logO(1) n) query ⇒
Ω(m2−ε) space

[Pǎtraşcu and Roditty,
FOCS 2010]



Points in convex position

If general problem is hard, what about special cases, such
as points in convex position?

Note: Point set from reduction not in convex position
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Points in convex position

Pairs of reciprocal
local maxima

Neighbouring points must be closer or
out of range

Lemma: O(n) such
pairs in total
Proof : Intuitively,
each pair is visited by
the rotating calipers
algorithm.

Consider two sections and their pair of furthest points
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Answering queries

Diameter = maximum of furthest pairs of
(1) reciprocal local maxima in range
(2) pairs with one point on

section boundary

For (1):
• map pair pi, pj −→

point (i, j), weight
= d(pi,pj)

• 2D range-max
data structure

• query:
x-range = first segment,
y-range = second segment

p1 p2

pi

pj

pn
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Points in convex position
Answering queries

Diameter = maximum of furthest pairs of
(1) reciprocal local maxima in range
(2) pairs with one point on

section boundary

Small extension also solves range width queries

For (2), we develop an
O(n logn)-space data
structure with query
time O(logn)
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• Range diameter is as hard as set intersection

• For two independently preprocessed convex polygons
P and Q, computing furthest pair in P ∪Q takes
Ω̃(min(|P|, |Q|)) time



Conclusions

• For points in convex position: range diameter and width
queries in O(n logn) space and O(logn) query time
(or O(n logε n) space, O(log2 n) query time)

• Number of reciprocal local maxima of any convex
polygon is linear → possibly useful in other contexts

• Range diameter is as hard as set intersection

• For two independently preprocessed convex polygons
P and Q, computing furthest pair in P ∪Q takes
Ω̃(min(|P|, |Q|)) time


