—
IMabalLGo ~.- -. -_'/—

Cleaning massive sonar point clouds

Lars Arge Kasper Green Larsen Thomas Mglhave Freek van Walderveen
Aarhus University Aarhus University Duke University Aarhus University
@
o /o
@
@
e
@
¢ ®



Seabed scanning
with echosounders




Seabed scanning
with echosounders

{

IMmabalLGo ~.- -. -




Seabed scanning
with echosounders




Seabed scanning
with echosounders




Seabed scanning
with echosounders




Seabed scanning
with echosounders




Seabed scanning
with echosounders




Seabed scanning
with echosounders




Seabed scanning
with echosounders




Seabed scanning
with echosounders




Seabed scanning
with echosounders




Seabed scanning
with echosounders

N -~
Q\_
~—
~—
—_—
s
\\
(]
® [ )



Seabed scanning
with echosounder

/|

(

U




Seabed scanning
with echosounde




Seabed scannin
with echosound




Seabed scanni
with echosoun




Seabed scannj
with echosou




Seabed sc
with echo










ning
ounders

O

\\\ =
S —
& < 2.2 billion points / day )
o % ® o ® ®



d scanning
chosounders




eabed scanning
with echosounders




Seabed scanning
with echosounders




Seabed scanning
with echosounders




|

Seabed scanning
with echosounders

!




Seabed scanning
with echosounders




Real-world examples

Data: StatoilHydro




Data: StatoilHydro

",

i ety
fe

.rl-l b, ¥ Fl
A el

9]
@
Q.
=
<
x
L
=
—
o
=
E
Q
(0




Real-world examples

Data: StatoilHydro




Real-world examples

Data: StatoilHydro



Noise types

Data: StatoilHydro

1. Random spikes, possibly clustered
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Noise types

Data: StatoilHydro

1. Random spikes, possibly clustered
2. Non-permanent physical objects (e.g. fish)

3. Structural noise

Problem

Remove these types of noise from

massive point sets while

keeping features intact
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E.g. CUBE [Calder & Mayer 2003], industry standard

e Place grid over points
e Estimate heights at grid nodes

— Stastical analysis of points in neighbourhood

e Remove points far away from estimated surface

4-5



Previous work

Local-neighbourhood based

E.g. CUBE [Calder & Mayer 2003], industry standard

e Place grid over points
e Estimate heights at grid nodes

— Stastical analysis of points in neighbourhood

e Remove points far away from estimated surface

— Problems handling large clusters of noise and structural noise (types 2 and 3)
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|/ O-efficient algorithms
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at once
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|/O model: analyze number of data transfers between internal and external memory

1/0:
B elements
at once
Size:
M elements

e Scanning N elements:
O(scan(N)) =O(N/B) I/Os

e Sorting N elements:
O(sort(N)) = O(N/B logy,,sN/B) 1/Os
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1/O: B
elements
at once

size:
M elements

Delaunay triangulation for computing a TIN DEM

e O(sort(N)) [Goodrich et al. 1993, Kumar & Ramos 2002]

e Practical O(sort(N)) [Agarwal et al. 2005]
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|/ O-efficient algorithms

Previous work

1/O: B
elements
at once

size:
M elements

Delaunay triangulation for computing a TIN DEM

e O(sort(N)) [Goodrich et al. 1993, Kumar & Ramos 2002]

e Practical O(sort(N)) [Agarwal et al. 2005]

Connected components

e O(sort(|E|) logzlogz(B%)) [Munagala and Ranade 1999]

e Practical O(sort(N) logz(N/M)) [Agarwal et al. 2006] (batched union—find)
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Our results
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e Cleaning algorithm for MBES data

— Identifies both random, local and structural noise
— Theoretically 1/O-efficient

— Practically efficient and implementable
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Our results
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e Cleaning algorithm for MBES data

— Identifies both random, local and structural noise
— Theoretically 1/O-efficient

— Practically efficient and implementable

e Connected component algorithm

— O(sort(N)) I/Os under a natural assumption

— Practically efficient and implementable
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Our cleaning algorithm

1. Perturb “xy-duplicate” points

2. Create Delaunay triangulation (— TIN)

3. Add diagonals

4. Remove edges with z-difference > threshold
5. Find largest connected component

6. Remove all points not in largest component
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Our cleaning algorithm

1. Perturb “xy-duplicate” points x

2. Create Delaunay triangulation (— TIN)

3. Add diagonals

4. Remove edges with z-difference > threshold

5. Find largest connected component

6. Remove all points not in largest component

O(sort(N)) 1/Os 4+ connected components = O(sort(N)loglogB) |/Os, or
O(sort(N)) 1/Os under a practical assumption
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Why it works
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Data: StatoilHydro

Why it works
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Why it works
fish
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Why it works

fish

Data: StatoilHydro
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Data: StatoilHydro
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Why it works
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Why it works

with vs. without diagonals

Data: StatoilHydro
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Results
type-1 noise

Data: EIVA
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Results
type-1 noise

Data: EIVA
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Some numbers

StatoilHydro, EIVA
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Implemented in commercial product
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Conclusion, future work

Implemented in commercial product SCALGO ﬁ
o Open problem: defining theoretical model of outlier noise .
— Objective theoretical performance analysis I .

— Compare Delaunay triangulation with other neighbourhood grap.)hs_
o Open problem: find easier alternative to Delaunay triangulation
Requirements:

— Good connectivity

— Fast to compute
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Connected component algorithm
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e Compute connected component labelling: ‘5@
vertices have equal labels < they are in the same connected component

e Algorithm: two phases, sweeping over edge & vertex lists

— Down phase: augment some vertices with additional connectivity info.

— Up phase: compute final component labels

Assumption: edges intersecting sweep line always fit in main memory
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Connected component algorithm

20
N
e Compute connected component labelling: ‘5@
vertices have equal labels < they are in the same connected component

e Algorithm: two phases, sweeping over edge & vertex lists

— Down phase: augment some vertices with additional connectivity info.

— Up phase: compute final component labels

Assumption: edges intersecting sweep line always fit in main memory

e Total number of 1/Os necessary: O(sort(N))
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Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

<~

3 path between them above or through sweep line
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o Merge components
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Connected component algorithm
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Maintain: component labelling of vertices incident
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