—
IMabalLGo ~.- -. -_'/—

Cleaning massive sonar point clouds

Lars Arge Kasper Green Larsen Thomas Mglhave Freek van Walderveen
Aarhus University Aarhus University Duke University Aarhus University
@
o /o
@
@
e
@
¢ ®

Seabed scanning
with echosounders

Seabed scanning
with echosounders

{

IMmabalLGo ~.- -. -

Seabed scanning
with echosounders

Seabed scanning
with echosounders

Seabed scanning
with echosounders

Seabed scanning
with echosounders

Seabed scanning
with echosounders

Seabed scanning
with echosounders

Seabed scanning
with echosounders

Seabed scanning
with echosounders

Seabed scanning
with echosounders

Seabed scanning
with echosounders

N -~
Q_
~—
~—
—_—
s
\\
(]
® [)

Seabed scanning
with echosounder

/|

(

U

Seabed scanning
with echosounde

Seabed scannin
with echosound

Seabed scanni
with echosoun

Seabed scannj
with echosou

Seabed sc
with echo

ning
ounders

O

\\\ =
S —
& < 2.2 billion points / day)
o % ® o ® ®

d scanning
chosounders

eabed scanning
with echosounders

Seabed scanning
with echosounders

Seabed scanning
with echosounders

|

Seabed scanning
with echosounders

!

Seabed scanning
with echosounders

Real-world examples

Data: StatoilHydro

Data: StatoilHydro

",

i ety
fe

.rl-l b, ¥ Fl
A el

9]
@
Q.
=
<
x
L
=
—
o
=
E
Q
(0

Real-world examples

Data: StatoilHydro

Real-world examples

Data: StatoilHydro

Noise types

Data: StatoilHydro

1. Random spikes, possibly clustered

3-1

Noise types

Data: StatoilHydro

1. Random spikes, possibly clustered

e

—

e
rnr e
S

0
i :’d’,ﬁ'ﬁi} |

i
i

s g
et e e et
e e

e

e i
e
s mo:
e B e
i S

E=E

;

......
PR T L R

3-2

Noise types

Data: StatoilHydro

1. Random spikes, possibly clustered

3-3

Noise types

Data: StatoilHydro

1. Random spikes, possibly clustered

2. Non-permanent physical objects (e.g. fish)

3-4

Noise types

Data: StatoilHydro

1. Random spikes, possibly clustered
2. Non-permanent physical objects (e.g. fish)

3. Structural noise

3-5

Noise types

Data: StatoilHydro

1. Random spikes, possibly clustered
2. Non-permanent physical objects (e.g. fish)

3. Structural noise

Problem

Remove these types of noise from

massive point sets while

keeping features intact

3-6

Previous work

Local-neighbourhood based

4-1

Previous work

Previous work

Previous work

Previous work

Local-neighbourhood based

E.g. CUBE [Calder & Mayer 2003], industry standard

e Place grid over points
e Estimate heights at grid nodes

— Stastical analysis of points in neighbourhood

e Remove points far away from estimated surface

4-5

Previous work

Local-neighbourhood based

E.g. CUBE [Calder & Mayer 2003], industry standard

e Place grid over points
e Estimate heights at grid nodes

— Stastical analysis of points in neighbourhood

e Remove points far away from estimated surface

— Problems handling large clusters of noise and structural noise (types 2 and 3)

4-6

|/ O-efficient algorithms

|/O model: analyze number of data transfers between internal and external memory

1/0:
B elements
at once

size:
M elements

5-1

|/ O-efficient algorithms

|/O model: analyze number of data transfers between internal and external memory

1/0:
B elements
at once
Size:
M elements

e Scanning N elements:
O(scan(N)) =O(N/B) I/Os

5-2

|/ O-efficient algorithms

|/O model: analyze number of data transfers between internal and external memory

1/0:
B elements
at once
Size:
M elements

e Scanning N elements:
O(scan(N)) =O(N/B) I/Os

e Sorting N elements:
O(sort(N)) = O(N/B logy,,sN/B) 1/Os

5-3

|/ O-efficient algorithms

Previous work

1/O: B
elements
at once

size:
M elements

Delaunay triangulation for computing a TIN DEM

6-1

|/ O-efficient algorithms

Previous work

1/O: B
elements
at once

size:
M elements

Delaunay triangulation for computing a TIN DEM

e O(sort(N)) [Goodrich et al. 1993, Kumar & Ramos 2002]

e Practical O(sort(N)) [Agarwal et al. 2005]

6-2

|/ O-efficient algorithms

Previous work

1/O: B
elements
at once

size:
M elements

Delaunay triangulation for computing a TIN DEM

e O(sort(N)) [Goodrich et al. 1993, Kumar & Ramos 2002]

e Practical O(sort(N)) [Agarwal et al. 2005]

Connected components

e O(sort(|E|) logzlogz(B%)) [Munagala and Ranade 1999]

e Practical O(sort(N) logz(N/M)) [Agarwal et al. 2006] (batched union—find)

6-3

Our results

7-1

e Cleaning algorithm for MBES data

— Identifies both random, local and structural noise
— Theoretically 1/O-efficient

— Practically efficient and implementable

N

\

N

é\b

Our results

7-2

e Cleaning algorithm for MBES data

— Identifies both random, local and structural noise
— Theoretically 1/O-efficient

— Practically efficient and implementable

e Connected component algorithm

— O(sort(N)) I/Os under a natural assumption

— Practically efficient and implementable

Our cleaning algorithm

1. Perturb “xy-duplicate” points

8-1

Our cleaning algorithm

1. Perturb “xy-duplicate” points

8-2

Our cleaning algorithm

1. Perturb “xy-duplicate” points

8-3

Our cleaning algorithm

1. Perturb “xy-duplicate” points

2. Create Delaunay triangulation (— TIN)

8-4

Our cleaning algorithm

1. Perturb “xy-duplicate” points

2. Create Delaunay triangulation (— TIN)

8-5

Our cleaning algorithm

1. Perturb “xy-duplicate” points

2. Create Delaunay triangulation (— TIN)

8-6

Our cleaning algorithm

1. Perturb “xy-duplicate” points

2. Create Delaunay triangulation (— TIN)

3. Add diagonals

8-7

Our cleaning algorithm

1. Perturb “xy-duplicate” points

2. Create Delaunay triangulation (— TIN)

3. Add diagonals

8-8

Our cleaning algorithm

1. Perturb “xy-duplicate” points

2. Create Delaunay triangulation (— TIN)

3. Add diagonals

Our cleaning algorithm

1. Perturb “xy-duplicate” points
2. Create Delaunay triangulation (— TIN)

3. Add diagonals

4. Remove edges with z-difference > threshold

8-10

Our cleaning algorithm

1. Perturb “xy-duplicate” points

2. Create Delaunay triangulation (— TIN)

3. Add diagonals

4. Remove edges with z-difference > threshold

8-11

Our cleaning algorithm

1. Perturb “xy-duplicate” points

2. Create Delaunay triangulation (— TIN)

3. Add diagonals

4. Remove edges with z-difference > threshold

5. Find largest connected component

8-12

Our cleaning algorithm

1. Perturb “xy-duplicate” points

2. Create Delaunay triangulation (— TIN)

3. Add diagonals

4. Remove edges with z-difference > threshold
5. Find largest connected component

6. Remove all points not in largest component

8-13

Our cleaning algorithm

1. Perturb “xy-duplicate” points x

2. Create Delaunay triangulation (— TIN)

3. Add diagonals

4. Remove edges with z-difference > threshold

5. Find largest connected component

6. Remove all points not in largest component

O(sort(N)) 1/Os 4+ connected components = O(sort(N)loglogB) |/Os, or
O(sort(N)) 1/Os under a practical assumption

8-14

Why it works

f|Sh Data: StatoilHydro
® ...
o ®
... ..0 o
®o0 04°%590,°
® _oo00 ®
® e e ®
® ®
® ®
® .0:80.'.
¢ : ®
® ®

‘0.:: - '.::..::o;:'o !!’i‘i s %2° %% :OO.'...:z:.
.:g;.:z:%'{.g.%.?.:.g':}:{:':o: :; ¢ o 3. ° 4 '.'..',: S0 ot %’
0% 0%0,0,0 0b o 0,° X
)“:0...:0. ::o. *te,
...........
..0.: o0 ° ® ®
o000 0

Data: StatoilHydro

Why it works
fish

A

\\

b
R
X

{\/
Wil

,NP
S

g

4

Wasz.
KT e

PRIATR T -.
N

_ *-?3,;;;‘3 VZa%s
A T TR
AL NI RSk
] N
"""“

>
XX7
J

4’4’/{«;7 K
AN
RN D

{

Why it works
fish

Data: StatoilHydro

> threshold

P

TN W7

it

AW APy L = .

‘ A= é J ' ol 1
LA NINTIIIIS DR A \ O
e g SV] TN '

)

\/\ ’l'ﬁﬁ’ K ’}‘\v S
\/\/ W\
NN

KX
0

b
¢

{

Why it works

fish

Data: StatoilHydro

PR

NN
A
AN
x\:.ﬂ;‘ 7774 /
LS

D '/
P N
g 270
,uﬂm“\._v) Vi "
N AR R ey
ek (W) o o iy,
A
L\ AN
LA CORIAN
AN Wi o Ny ey, vy
‘ RS
AN S N

/ N

,Mrw Q

£
N/

AV

(N
N/

&)
7aY

W,
A

X
Yo\,

\}

2

v
>
o

o
<

v
\7
e

AW
W a0
Ay

ek

> threshold

Data: StatoilHydro

MU AR I AT e

TN e

Why it works
no diagonals = pipeline disconnected

L ‘.." : %"l‘ :
g ‘.’0‘4‘ “__!i > A‘

9-5

Why it works

Data: StatoilHydro

ted

ISCONNEC

d

line

ipe

Is = pi

lagona

nod

9-6

Why it works

with vs. without diagonals

Data: StatoilHydro

9-7

removed with and without diagonals

only kept with diagonals

not removed

Results
type-1 noise

Data: EIVA

T -

s WO i .W

e ., B B g
I g ok
- - % % s

e
-

in

L

- ;
o . B "
e ...\..‘_ = .q i
2T - g

i
L |'. -

- 4 5
& = . e
- N .
& [b e -
A
=
e, -

Results
type-1 noise

Data: EIVA

Results

type-2 noise

Data: StatoilHydro

Results
2 noise

type-

e TAleer

Data: StatoilHydro

Results
type-3 noise

Lo
)
=

Results
type-3 noise

StatoilHydro

Data

©
=)
=

Results

StatoilHydro

Data

-3 noise

type

10-7

Some numbers

StatoilHydro, EIVA

Data

much
35 cm

some
5

ittle

5
0
0

Noise

m

C

m
%
%

C

4
4

Threshold

18%

13%

not auto.

Manually removed

8%

0

3%

0

removed: only auto.

Not manual

11-1

Some numbers

StatoilHydro, EIVA

Data

)
£
O
V)

ittle

Noise

5 cm

m

C

5
0.4%

Threshold

13%

not auto.

Manually removed

3%

0

4%

0

only auto

removed

Not manual.

cleaning

removed by manual

A
e e

o il

IR AO

IR IR

Dttt SO
e

et

A)
e LSO T e

PR
s
S .mww.ﬁm:
A
e e e
Jahay,

11-2

Some numbers

StatoilHydro, EIVA

Data

much
35 cm

some
5

ittle

5
0
0

Noise

m

C

m
%
%

C

4
4

Threshold

18%

13%

not auto.

Manually removed

8%

0

3%

0

removed: only auto.

Not manual

11-3

Conclusion, future work

Implemented in commercial product

12-1

SCALGO

)

Conclusion, future work

Implemented in commercial product SCALGO ﬁ
o Open problem: defining theoretical model of outlier noise .
— Objective theoretical performance analysis I .

— Compare Delaunay triangulation with other neighbourhood gra;.)h’s_

12-2

Conclusion, future work

Implemented in commercial product SCALGO ﬁ
o Open problem: defining theoretical model of outlier noise .
— Objective theoretical performance analysis I .

— Compare Delaunay triangulation with other neighbourhood gra;.)h’s_

o Open problem: find easier alternative to Delaunay triangulation
Requirements:

— Good connectivity

— Fast to compute

12-3

Conclusion, future work

Implemented in commercial product SCALGO ﬁ
o Open problem: defining theoretical model of outlier noise .
— Objective theoretical performance analysis I .

— Compare Delaunay triangulation with other neighbourhood grap.)hs_
o Open problem: find easier alternative to Delaunay triangulation
Requirements:

— Good connectivity

— Fast to compute

12-4

Connected component algorithm

N
e Compute connected component labelling: ‘f@
vertices have equal labels < they are in the same connected component

14-1

Connected component algorithm

20
N
e Compute connected component labelling: ‘5@
vertices have equal labels < they are in the same connected component

e Algorithm: two phases, sweeping over edge & vertex lists

— Down phase: augment some vertices with additional connectivity info.

— Up phase: compute final component labels

Assumption: edges intersecting sweep line always fit in main memory

14-2

Connected component algorithm

20
N
e Compute connected component labelling: ‘5@
vertices have equal labels < they are in the same connected component

e Algorithm: two phases, sweeping over edge & vertex lists

— Down phase: augment some vertices with additional connectivity info.

— Up phase: compute final component labels

Assumption: edges intersecting sweep line always fit in main memory

e Total number of 1/Os necessary: O(sort(N))

14-3

Connected component algorithm
down phase

LI Iz

\

15-1

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

<~

3 path between them above or through sweep line

15-2

Connected component algorithm
down phase

15-3

/\SZ

For each incident down-edge:

e Find label of other end-point, or create it

o Merge components

\ Mamtam component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label
<~
3 path between them above or through sweep line

Connected component algorithm
down phase

15-4

For each incident down-edge:

e Find label of other end-point, or create it

o Merge components

\ Mamtam component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

<~

3 path between them above or through sweep line

Connected component algorithm
down phase

15-5

For each incident down-edge:

e Find label of other end-point, or create it

o Merge components

\ Mamtam component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

<~

3 path between them above or through sweep line

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

<~

3 path between them above or through sweep line

15-6

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

<~

3 path between them above or through sweep line

15-7

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

<~

3 path between them above or through sweep line

15-8

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

<~

3 path between them above or through sweep line

15-9

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

<~

3 path between them above or through sweep line

15-10

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

<~

3 path between them above or through sweep line

15-11

Connected component algorithm
down phase

Maintain: component labelling of vertices incident
to edges intersecting sweep line
Invariant: vertices have same label

<~

4 path between them above or through sweep line

15-12

Connected component algorithm
down phase

Maintain: component labelling of vertices incident

to edges intersecting sweep line
Invariant: vertices have same label

<~
3 path between them above or through sweep line

15-13

Connected component algorithm
down phase

Maintain: component labelling of vertices incident

to edges intersecting sweep line
Invariant: vertices have same label

<~
3 path between them above or through sweep line

15-14

Connected component algorithm
down phase

Maintain: component labelling of vertices incident

to edges intersecting sweep line
Invariant: vertices have same label

<~
3 path between them above or through sweep line

15-15

Connected component algorithm
down phase

Maintain: component labelling of vertices incident

to edges intersecting sweep line
Invariant: vertices have same label

<~
3 path between them above or through sweep line

15-16

Connected component algorithm
down phase

Maintain: component labelling of vertices incident

to edges intersecting sweep line
Invariant: vertices have same label

<~
3 path between them above or through sweep line

15-17

Connected component algorithm
down phase

Maintain: component labelling of vertices incident

to edges intersecting sweep line
Invariant: vertices have same label
<~

4 path between them above or through sweep line

No lower neighbours: augment vertex
with vertex in same component

T

15-18

Connected component algorithm
down phase

Maintain: component labelling of vertices incident

to edges intersecting sweep line
Invariant: vertices have same label
<~

4 path between them above or through sweep line

No lower neighbours: augment vertex
with vertex in same component

T

15-19

Connected component algorithm
down phase

Maintain: component labelling of vertices incident

to edges intersecting sweep line
Invariant: vertices have same label

<~
3 path between them above or through sweep line

15-20

Connected component algorithm
down phase

Maintain: component labelling of vertices incident

to edges intersecting sweep line
Invariant: vertices have same label

<~
3 path between them above or through sweep line

15-21

Connected component algorithm
down phase

Maintain: component labelling of vertices incident

to edges intersecting sweep line
Invariant: vertices have same label

<~
3 path between them above or through sweep line

15-22

Connected component algorithm
down phase

Maintain: component labelling of vertices incident

to edges intersecting sweep line
Invariant: vertices have same label

<~
3 path between them above or through sweep line

15-23

Connected component algorithm
down phase

Maintain: component labelling of vertices incident

to edges intersecting sweep line
Invariant: vertices have same label
=

3 path between them above or through sweep line

Zh

15-24

Connected component algorithm
down phase

Maintain: component labelling of vertices incident

to edges intersecting sweep line
Invariant: vertices have same label
=

3 path between them above or through sweep line

77,

Connected component algorithm
up phase

Invariant:
vertices with neighbour below sweep line have correct label

\

//\//

Connected component algorithm
up phase

Invariant:
vertices with neighbour below sweep line have correct label

\

Connected component algorithm
up phase

Invariant:
vertices with neighbour below sweep line have correct label

\

Connected component algorithm
up phase

Invariant:
vertices with neighbour below sweep line have correct label

16-4

\

Connected component algorithm
up phase

Invariant:
vertices with neighbour below sweep line have correct label

16-5

Connected component algorithm

up phase

Invariant:
vertices with neighbour below sweep line have correct label

16-6

\

