Locality and bounding-box quality of two-dimensional space-filling curves

European Space-filling Agency

Eindhoven University of Technology

Ordering and grouping points

Ordering and grouping points

What about non-gridpoints?

Defining a space-filling curve

Hilbert's space-filling curve

Quality measures

Quality measures

Quality measures

Literature: [Mandelbrot 1983], [Chochia et al. 1995], [Gotsman \& Lindenbaum 1996], [Alber \& Niedermeier 2000], [Niedermeier et al. 2002], [Bauman 2006], etc.
worst-case locality $:=\max _{p, q \in \text { unit } \square} \frac{\text { squared distance between } p \text { and } q}{\text { area filled by curve between } p \text { and } q}$

For a curve section of fixed size, how far can the endpoints be apart?

Quality measures

$$
\text { worst-case bbox area }:=\max _{p, q \in u n i t} \square \frac{\text { bbox area of } C(p, q)}{\text { area filled by } C(p, q)}
$$

For a curve section of fixed size, how big can the bounding box be?

Worst-case bounding-box area $\geqslant 2$

Worst-case bounding-box area $\geqslant 2$

assumptions

- Grid is rectangular, regular and recursively refinable.

Worst-case bounding-box area $\geqslant 2$

assumptions

- Grid is rectangular, regular and recursively refinable.

Worst-case bounding-box area $\geqslant 2$

assumptions

- Grid is rectangular, regular and recursively refinable.

Worst-case bounding-box area $\geqslant 2$

assumptions

- Grid is rectangular, regular and recursively refinable.
- Curve finishes filling one tile before starting on the next one.

Worst-case bounding-box area $\geqslant 2$

- Grid is rectangular, regular and recursively refinable.
- Curve finishes filling one tile before starting on the next one.

Worst-case bounding-box area $\geqslant 2$

- Grid is rectangular, regular and recursively refinable.
- Curve finishes filling one tile before starting on the next one.

WBA $\geqslant \frac{|\mathrm{bbox}(\mathrm{C}(\mathrm{p}, \mathrm{q}))|}{|\mathrm{C}(\mathrm{p}, \mathrm{q})|}=\frac{1}{1 / 4+1 / 4}=2$

Worst-case bounding-box area $\geqslant 2$

- Grid is rectangular, regular and recursively refinable.
- Curve finishes filling one tile before starting on the next one.
- Case: curve is edge-connected.

Worst-case bounding-box area $\geqslant 2$

- Grid is rectangular, regular and recursively refinable.
- Curve finishes filling one tile before starting on the next one.
- Case: curve is edge-connected.

Worst-case bounding-box area $\geqslant 2$

- Grid is rectangular, regular and recursively refinable.
- Curve finishes filling one tile before starting on the next one.
- Case: curve is edge-connected.

Worst-case bounding-box area $\geqslant 2$

- Grid is rectangular, regular and recursively refinable.
- Curve finishes filling one tile before starting on the next one.
- Case: curve is edge-connected.

Worst-case bounding-box area $\geqslant 2$

- Grid is rectangular, regular and recursively refinable.
- Curve finishes filling one tile before starting on the next one.
- Case: curve is edge-connected.

Worst-case bounding-box area $\geqslant 2$

- Grid is rectangular, regular and recursively refinable.
- Curve finishes filling one tile before starting on the next one.
- Case: curve is edge-connected.

Worst-case bounding-box area $\geqslant 2$

- Grid is rectangular, regular and recursively refinable.
- Curve finishes filling one tile before starting on the next one.
- Case: curve is edge-connected.

Worst-case bounding-box area $\geqslant 2$

- Grid is rectangular, regular and recursively refinable.
- Curve finishes filling one tile before starting on the next one.
- Case: curve is edge-connected.

Worst-case bounding-box area $\geqslant 2$

- Grid is rectangular, regular and recursively refinable.
- Curve finishes filling one tile before starting on the next one.
- Case: curve is edge-connected.

$$
\begin{aligned}
\text { WBA } & \geqslant \frac{|\operatorname{bbox}(C(p, q))|}{|C(p, q)|} \\
& =\frac{w \cdot h}{w+h-1-f_{p}-\left(1-f_{q}\right)} \\
& \geqslant \frac{2 \cdot(w+h-2)}{w+h-2+f_{q}-f_{p}}
\end{aligned}
$$

$$
w \geqslant 2
$$

$$
\begin{aligned}
\mathrm{f}_{\mathrm{q}}-\mathrm{f}_{\mathrm{p}} & \geqslant\left(\frac{2}{\mathrm{WBA}}-1\right)(w+h-2) \\
& \geqslant 2 \cdot\left(\frac{2}{\mathrm{WBA}}-1\right) \\
\mathrm{C} & :=2 \cdot\left(\frac{2}{\mathrm{WBA}}-1\right)
\end{aligned}
$$

Worst-case bounding-box area $\geqslant 2$

- Grid is rectangular, regular and recursively refinable.
- Curve finishes filling one tile before starting on the next one.
- Case: curve is edge-connected.

$$
\begin{aligned}
\text { WBA } & \geqslant \frac{|\operatorname{bbox}(C(p, q))|}{|C(p, q)|} \\
& =\frac{w \cdot h}{w+h-1-f_{p}-\left(1-f_{q}\right)} \\
& \geqslant \frac{2 \cdot(w+h-2)}{w+h-2+f_{q}-f_{p}}
\end{aligned}
$$

$$
w \geqslant 2
$$

$$
\begin{aligned}
f_{q}-f_{p} & \geqslant\left(\frac{2}{\mathrm{WBA}}-1\right)(w+h-2) \\
& \geqslant 2 \cdot\left(\frac{2}{\mathrm{WBA}}-1\right) \\
\mathrm{C} & :=2 \cdot\left(\frac{2}{\mathrm{WBA}}-1\right)
\end{aligned}
$$

$$
\mathrm{WBA}<2 \Rightarrow \forall \mathrm{p}, \mathrm{q}: \mathrm{f}_{\mathrm{q}}-\mathrm{f}_{\mathrm{p}}>0
$$

Worst-case bounding-box area $\geqslant 2$

- Grid is rectangular, regular and recursively refinable.
- Curve finishes filling one tile before starting on the next one.
- Case: curve is edge-connected.

- $f_{q}-f_{p} \geqslant C$
- WBA <2

$$
\forall p, q: f_{q}-f_{p}>0
$$

Worst-case bounding-box area $\geqslant 2$

- Grid is rectangular, regular and recursively refinable.
- Curve finishes filling one tile before starting on the next one.
- Case: curve is edge-connected.

- $f_{q}-f_{p} \geqslant C$
- WBA <2

$$
\forall p, q: f_{q}-f_{p}>0
$$

Worst-case bounding-box area $\geqslant 2$

- Grid is rectangular, regular and recursively refinable.
- Curve finishes filling one tile before starting on the next one.
- Case: curve is edge-connected.

- $f_{q}-f_{p} \geqslant C$
- WBA <2

$$
\forall p, q: f_{q}-f_{p}>0
$$

- Grid size $n \times n$

$$
\sum_{\text {consecutive }} f_{q, q}-f_{p} \leqslant 1
$$

Worst-case bounding-box area $\geqslant 2$

- Grid is rectangular, regular and recursively refinable.
- Curve finishes filling one tile before starting on the next one.
- Case: curve is edge-connected.

- $f_{q}-f_{p} \geqslant C$
- WBA <2

$$
\forall p, q: f_{q}-f_{p}>0
$$

- Grid size $\mathfrak{n} \times n$

$$
\begin{aligned}
& \sum_{\text {consecutive } p, q} f_{q}-f_{p} \leqslant 1 \\
& \# \text { of sections }=\Omega(n) \\
& \exists p, q: f_{q}-f_{p}=O\left(\frac{1}{n}\right)
\end{aligned}
$$

Worst-case bounding-box area $\geqslant 2$

- Grid is rectangular, regular and recursively refinable.
- Curve finishes filling one tile before starting on the next one.
- Case: curve is edge-connected.

- $f_{q}-f_{p} \geqslant C$
- WBA <2

$$
\forall p, q: f_{q}-f_{p}>0
$$

- Grid size $\mathfrak{n} \times n$

$$
\begin{aligned}
& \sum_{\text {consecutive } p, q} f_{q}-f_{p} \leqslant 1 \\
& \# \text { of sections }=\Omega(n) \\
& \exists p, q: f_{q}-f_{p}=O\left(\frac{1}{n}\right) \\
& n \rightarrow \infty \Rightarrow f_{q}-f_{p}<C
\end{aligned}
$$

Non-rectangular tilings?

Non-rectangular tilings?

Further lower-bound results

Trivial:

- Triangle-based curves: WBA $\geqslant 2$.

Further lower-bound results

$$
\mathrm{WL}_{e}:=\max _{\mathrm{p}, \mathrm{q} \in \mathrm{unit} \square} \frac{\text { squared } \mathrm{L}_{\mathrm{e}} \text {-distance between } \mathrm{p} \text { and } \mathrm{q}}{\text { area filled by curve between } \mathrm{p} \text { and } \mathrm{q}}
$$

For a curve section of fixed size, how far can the endpoints be apart?

Further lower-bound results

Trivial:

- Triangle-based curves: WBA $\geqslant 2$.

Using our proof technique:

- $\mathrm{WL}_{2} \geqslant \mathrm{WL}_{\infty} \geqslant 4$.
(Previously, for square-based curves: $\geqslant 31 / 2$ in general, $\geqslant 4$ for cyclic curves.)
Using a technique from Niedermeier et al. [2002]:
- Triangle-based curves: $\mathrm{WL}_{2} \geqslant 4$.

Computational results

- Approximation algorithm exploits recursive nature of curves (with a catch).

Computational results

- Approximation algorithm exploits recursive nature of curves (with a catch).
- Confirms earlier results obtained manually:

WL-measures of curves by Peano, Hilbert, Sierpińsky-Knopp, etc.

Computational results

- Approximation algorithm exploits recursive nature of curves (with a catch).
- Confirms earlier results obtained manually:

WL-measures of curves by Peano, Hilbert, Sierpińsky-Knopp, etc.

- New curve with good locality:

Defining rule:

Computational results

- Approximation algorithm exploits recursive nature of curves (with a catch).
- Confirms earlier results obtained manually:

WL-measures of curves by Peano, Hilbert, Sierpińsky-Knopp, etc.

- New curve with good locality:

Defining rule:

	$\xrightarrow{\text { stretch }}$			$\mathrm{R}:{ }^{0}$	-
Peano's curve	"Balanced Peano"			$h \sqrt{3}$	
Peano	8	8	102/3	2.000	2.722
Balanced Peano	4.619	4.619	8.619	2.000	2.155
Sierpińsky-Knopp	4	4	8	3.000	3.000

Open questions

- Lower bounds WL_{p} and WBA for other classes of space-filling curves?
- Improve lower bound WBP $\geqslant \mathrm{WBA} \geqslant 2$? Curve with WBP $=2$? (Balanced Peano: WBP $=2.155$.)
- Three-dimensional space-filling curves?

