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What about non-gridpoints?
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Defining a space-filling curve
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Defining a space-filling curve
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Hilbert's space-filling curve
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Literature: [Mandelbrot 1983], [Chochia et al. 1995], [Gotsman & Lindenbaum 1996],

[Alber & Niedermeier 2000], [Niedermeier et al. 2002], [Bauman 2006], etc.
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worst-case locality :=

For a curve section of fixed size, how far can the endpoints be apart?



Quality measures

filled by C(p, q)

bbox area of C(p, q)

Imax

worst-case bbox area :=

For a curve section of fixed size, how big can the bounding box be?
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Worst-case bounding-box area > 2

e Grid is rectangular, regular and recursively refinable.
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Worst-case bounding-box area > 2

e Grid is rectangular, regular and recursively refinable.

e Curve finishes filling one tile before starting on the next one.
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Worst-case bounding-box area > 2

e Grid is rectangular, regular and recursively refinable.
e Curve finishes filling one tile before starting on the next one.
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Worst-case bounding-box area > 2

e Grid is rectangular, regular and recursively refinable.
e Curve finishes filling one tile before starting on the next one.

e Case: curve is edge-connected.

'ﬁf\/

)

iéfr\
v [\
HER




Worst-case bounding-box area > 2

e Grid is rectangular, regular and recursively refinable.
e Curve finishes filling one tile before starting on the next one.

e Case: curve is edge-connected.




Worst-case bounding-box area > 2

e Grid is rectangular, regular and recursively refinable.
e Curve finishes filling one tile before starting on the next one.

e Case: curve is edge-connected.

K E:

-l




Worst-case bounding-box area > 2

e Grid is rectangular, regular and recursively refinable.
e Curve finishes filling one tile before starting on the next one.

e Case: curve is edge-connected.
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Worst-case bounding-box area > 2

e Grid is rectangular, regular and recursively refinable.
e Curve finishes filling one tile before starting on the next one.

e Case: curve is edge-connected.
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Worst-case bounding-box area > 2

e Grid is rectangular, regular and recursively refinable.
e Curve finishes filling one tile before starting on the next one.

e Case: curve is edge-connected.
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Worst-case bounding-box area > 2

e Grid is rectangular, regular and recursively refinable.

e Curve finishes filling one tile before starting on the next one.

e Case: curve is edge-connected.
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Worst-case bounding-box area > 2

e Grid is rectangular, regular and recursively refinable.
e Curve finishes filling one tile before starting on the next one.

e Case: curve is edge-connected.
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Worst-case bounding-box area > 2

e Grid is rectangular, regular and recursively refinable.
e Curve finishes filling one tile before starting on the next one.

e Case: curve is edge-connected.
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Worst-case bounding-box area > 2

e Grid is rectangular, regular and recursively refinable.
e Curve finishes filling one tile before starting on the next one.

e Case: curve is edge-connected.

o fq—1, =>C
e WBA <2

/\ Vp,q:fq—1, >0
e Gridsizen xn

Y fq—fp<l

consecutive p,q

# of sections = Q(n)

1
Elp,qfq—fp:C)(T—L)
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Further lower-bound results

Trivial:

e Triangle-based curves: WBA > 2.



Further lower-bound results

squared L.-distance between p and g
WL, := max :
p,acunitd]  area filled by curve between p and g

For a curve section of fixed size, how far can the endpoints be apart?



Further lower-bound results

Trivial:
e Triangle-based curves: WBA > 2.
Using our proof technique:

e WL, > WL, > 4.
(Previously, for square-based curves: > 31/ in general, > 4 for cyclic curves.)

Using a technique from Niedermeier et al. [2002]:

e Triangle-based curves: WL, > 4.
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Computational results

e Approximation algorithm exploits recursive nature of curves (with a catch).

e Confirms earlier results obtained manually:
WL-measures of curves by Peano, Hilbert, Sierpinsky—Knopp, etc.

e New curve with good locality:

il

Peano’s curve

Defining rule:

R- [0 1 2

“Balanced Peano’

stretch

hy/3
WL, | WL, WL, WBA | WBP
. 2
Peano 8 8 102/3 2.000 2.722
Balanced Peano 4619 | 4.619 | 8.619 | 2.000 | 2.155
Sierpinsky—Knopp | 4 4 8 3.000 3.000




Open questions

e Lower bounds WL,, and WBA for other classes of space-filling curves?

e Improve lower bound WBP > WBA > 27
Curve with WBP = 27 (Balanced Peano: WBP = 2.155.)

e Three-dimensional space-filling curves?



