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Quality measures

worst-case locality := max
p,q∈unit�

squared distance between p and q

area filled by curve between p and q

For a curve section of fixed size, how far can the endpoints be apart?

qp

q

Literature: [Mandelbrot 1983], [Chochia et al. 1995], [Gotsman & Lindenbaum 1996],
[Alber & Niedermeier 2000], [Niedermeier et al. 2002], [Bauman 2006], etc.



Quality measures

Quality measures

worst-case bbox area := max
p,q∈unit�

bbox area of C(p,q)

area filled by C(p,q)

For a curve section of fixed size, how big can the bounding box be?

qp

q
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• Curve finishes filling one tile before starting on the next one.

• Case: curve is edge-connected.

• Grid is rectangular, regular and recursively refinable.

∑
consecutive p,q

fq − fp 6 1

• Grid size n× n

n → ∞ ⇒ fq − fp < C

Worst-case bounding-box area > 2
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• WBA < 2

# of sections = Ω(n)
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Further lower-bound results

WLe := max
p,q∈unit�

squared Le-distance between p and q

area filled by curve between p and q

For a curve section of fixed size, how far can the endpoints be apart?

qp

q



Further lower-bound results

Trivial:

• Triangle-based curves: WBA > 2.

Using our proof technique:

• WL2 > WL∞ > 4.
(Previously, for square-based curves: > 31/2 in general, > 4 for cyclic curves.)

Using a technique from Niedermeier et al. [2002]:

• Triangle-based curves: WL2 > 4.
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• Approximation algorithm exploits recursive nature of curves (with a catch).

• Confirms earlier results obtained manually:
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• New curve with good locality:

0 1 2

h
√
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h

Defining rule:

Peano’s curve “Balanced Peano”

stretch

Peano

Balanced Peano

Sierpińsky–Knopp

WL∞ WL2 WL1 WBA WBP

8 8 102/3

4.619 4.619 8.619

2.000

2.000

2.722

2.155

4 4 8 3.000 3.000



Overview

Open questions

• Lower bounds WLp and WBA for other classes of space-filling curves?

• Improve lower bound WBP > WBA > 2?
Curve with WBP = 2? (Balanced Peano: WBP = 2.155.)

• Three-dimensional space-filling curves?


