
Constructability of Trip-lets

Jeroen Keiren∗ Freek van Walderveen† Alexander Wolff∗

Abstract

A trip-let is an object as shown on the cover of Hof-
stadter’s book Gödel, Escher, Bach: a solid, three-
dimensional object that, when viewed from three or-
thogonal directions, shows three different letters. In
this paper we consider two problems related to the
construction of such objects for a given set of three
letters. First, we want to know whether the silhou-
ettes of the object correspond to the letters we used
to make the object. Second, we are interested in the
connectedness of the final object: does it fall apart
during construction? We obtain results on the com-
binatorial complexity of objects and silhouettes for
letters given as general or rectilinear polygons with
holes, and give algorithms to solve the problems effi-
ciently for the rectilinear case.

1 Introduction

The process of making a trip-let can be described
mathematically as intersecting a set of infinite cones,
where each cone has its apex at the position of the
viewer and the shape as its base. In this paper, we
only consider orthogonal projections, thus cones be-
come infinitely long prisms.

Definition 1 The z-prism induced by a polygonal
shape (with holes) Sxy ⊂ R2 is the volume

Pz(Sxy) := {(x, y, z) | (x, y) ∈ Sxy, z ∈ R} ⊂ R3.

We define Py(Sxz) and Px(Syz) analogously.

Definition 2 The trip-let obtained from three given
shapes Sxy, Sxz, and Syz is the intersection of their
prisms: Pz(Sxy) ∩ Py(Sxz) ∩ Px(Syz) ⊂ R3.

In this paper we consider two properties of trip-lets;
validity and connectedness. A connected trip-let is
simply a trip-let consisting of one solid, connected
piece. To define the validity of a trip-let, we need
the notion of silhouette.

Definition 3 The z-silhouette of a volume V is

πxy(V ) := {(x, y) | ∃z ∈ R : (x, y, z) ∈ V }.
∗Faculteit Wiskunde en Informatica, Technische Universiteit

Eindhoven, The Netherlands. j.j.a.keiren@student.tue.nl,
www.win.tue.nl/~awolff
†MADALGO, Department of Computer Science, University

of Aarhus, Denmark. freek@vanwal.dk

Again, we define x- and y-silhouette similarly.
We say that a trip-let is valid if each of its silhou-

ettes matches exactly the corresponding input shape
Sxy, Sxz, and Syz. The example shown in Figure 1(a)
illustrates this. Although the intersection of any com-
bination of two of the polygons has correct silhou-
ettes, adding the third polygon yields an invalid trip-
let. Hence, any algorithm solving this problem has to
consider all three shapes together. Figure 1(b) illus-
trates the connectedness problem: in the centre of the
trip-let there is a small cube that is not connected to
the rest of the object.

At the 1998 ACM Symposium on Computational
Geometry, O’Rourke [1] presented the problem of
finding “simple conditions” to determine whether
three letters can form a valid and connected trip-let.
We present a first step into this direction. We analyze
the combinatorial complexity of triplets and silhou-
ettes, and we give algorithms for testing the validity
and connectedness of triplets induced by rectilinear
polygons, that is, polygons whose edges are parallel to
one of the primary axes. We measure the complexity
of our algorithms with respect to the total number n

Unconnected cube

(a)

(b)

Sxy

Syz

Sxz Silhouette does not match Sxy

Figure 1: (a) An invalid trip-let: the z-silhouette does
not match the top shape. (b) A non-connected trip-
let: it consists of two components.

1



of vertices of the input polygons.
Apart from their nice visual appearance, under-

standing the class of objects that can be represented
by trip-lets may yield useful insights in our ability to
understand three-dimensional scenes from silhouettes
obtained from different viewpoints [7].

Earlier work Most work related to the construction
of 3D objects from shapes considers the reconstruc-
tion of actual objects from silhouettes obtained from
different viewpoints. Our orthogonal case can be seen
as a variant of this problem with viewpoints at infin-
ity where we are not sure whether the object to be
reconstructed actually exists.

Bottino and Laurentini [4] ask whether it is possi-
ble to find the relative positions of viewpoints parallel
to a plane, given their corresponding silhouettes. If
such positions can be found, they call the silhouettes
compatible. They give sets of inequalities for the rela-
tive positions of the viewpoints for viewing directions
parallel to the plane, but do not provide efficient al-
gorithms to find these positions.

Ohgami and Sugihara [8] propose an algorithm for
finding relative viewing points in the plane for three
given silhouettes. Their algorithm does not guarantee
to find feasible positions even if they exist.

Hachenberger and Kettner [5] describe the imple-
mentation of Boolean operations on 3D Nef polyhe-
dra in CGAL. As a prism can be described by a 3D
Nef polyhedron, trip-lets can be constructed solely
using Boolean operations on Nef polyhedra. Then,
the number of components of the resulting trip-let is
known, solving our first problem. The silhouettes can
be found by projecting the resulting polyhedron back
to planes orthogonal to any of the three axes. By
comparing the silhouettes with the input shapes, our
second problem is also solved.

The expected running time of the intersection im-
plementation described by Hachenberger and Kettner
is dominated by the term O(k 3

√
k log k), where k is the

size of the resulting polyhedron. Hence, the above so-
lution runs in O(n4 log n) expected time if the object
consists of Θ(n3) cubes (see Fig. 2 for an example of
such an object).

Our results First, we investigate (in Section 2) the
combinatorial complexity of our objects: given three
shapes of total complexity n, we show that the result-
ing trip-let and its silhouettes have complexity Θ(n3)
and Θ(n4), respectively. Given rectilinear shapes, we
show that in the worst case a silhouette has complex-
ity Θ(n2).

Second, we give algorithms for testing validity and
connectedness of trip-lets constructed from rectilin-
ear shapes, see Sections 3 and 4. Within the class
of algorithms that actually construct the silhouettes
and trip-lets, our algorithms are near-optimal in the

Θ(n) strips

Θ(n) strips

Θ(n) strips

Figure 2: Three shapes generating Θ(n3) cubes.

worst case, testing validity and connectedness in time
O(n2 log n) and O((n2 + k) log n), respectively. Note
that k, the complexity of the given trip-let, is Ω(n2)∩
O(n3) in the worst case.

2 Complexity of objects and silhouettes

Determining the worst-case complexity of objects and
silhouettes by bounding the respective number of ver-
tices allows us to prove lower bounds on the running
time of any algorithm that, in answering one of the
problems, internally constructs the actual object or
silhouette. Due to lack of space, we only state the re-
sults and give some of the more important examples.

We start with a lemma concerning the complexity
of objects obtained from two or three shapes.

Lemma 1 Given m ∈ {2, 3} shapes with n vertices
in total, the complexity of the intersection of their
orthogonally oriented prisms is Θ(nm) in the worst
case.

An example illustrating the lower bound is given in
Figure 2. The set of three shapes yields an object con-
sisting of Θ(n3) vertices. Dropping one of the shapes
results in an object with Θ(n2) vertices.

Note that the trip-let in Figure 2 is not connected.
We conjecture the following.

Conjecture 1 Connected trip-lets have O(n2) ver-
tices.

It is easy to construct a connected trip-let with Θ(n2)
vertices.

The following lemma shows that silhouettes can
have higher complexity if we allow general polygonal
shapes.

Lemma 2 A silhouette constructed from general
polygonal shapes of total complexity n has complexity
Θ(n4) in the worst case.

2



Sxz Syz

(a) (b)

Top view

Bottom part

Top part

Figure 3: (a) Construction with 3 × 3 = 9 bars that do not overlap in the z-silhouette. (b) Construction with
(9− 1)× (9− 1) = 64 holes in the z-silhouette.

For proving the lower bound, consider one shape
with Θ(n) parallel strips that are slanted but do not
overlap when projected vertically, and one with Θ(n)
parallel, horizontal strips such as in Figure 3(a). The
z-silhouette obtained from these two shapes consists
of Θ(n2) parallel strips. By swapping the two shapes
the silhouette turns 90 degrees. If we stack the origi-
nal and rotated version, the combined silhouette is a
grid pattern with Θ(n4) vertices (see Figure 3(b)).

Hence, any algorithm that internally constructs the
silhouettes to be verified can never be faster than
Ω(n4). Fortunately, if we restrict ourselves to rec-
tilinear shapes, things cannot get that bad.

Lemma 3 A silhouette constructed from rectilinear
shapes of total complexity n has complexity Θ(n2) in
the worst case.

3 Determining validity

The correctness of one of the silhouettes of a trip-let,
say the one for shape Sxy, can be stated by saying that
the intersection of the prisms induced by the other
shapes “overshadows” Sxy:

Sxy ⊆ πxy(Py(Sxz) ∩ Px(Syz)).

We can use this characterization as a general idea for
an algorithm to determine the validity of a trip-let.
If the silhouette of the intersection of two prisms is
known, a simple line-sweep suffices to determine if this
silhouette covers the third shape. As we saw in Sec-
tion 2, general polygonal shapes may yield silhouettes
of complexity Θ(n4). We expect we cannot easily get
better running times than we saw for the approach
outlined in the introduction (at least for the valid-
ity problem). Therefore, from now on, we will only
consider shapes described by rectilinear polygons.

We compute the orthogonal projection of the inter-
section of the prisms formed by two silhouettes using a

z

x

y

Figure 4: Constructing the bottom silhouette; the
dashed area is a new rectangular facet.

sweep-plane algorithm. The orientation of the sweep
plane (effectively consisting of two sweep lines) is il-
lustrated in Figure 4. For each event—that is, a hori-
zontal edge—the new facets of the trip-let introduced
by that event that are parallel to the sweep plane are
computed. This results in a set of rectangles whose
union is exactly the orthogonal projection we were
looking for. As this is a fairly standard procedure, we
will not go into further detail.

The main problem with actually computing the
union of this set of rectangles is that there may for
example be Θ(n2) rectangles whose union again has
a complexity of Θ(n2) (consider for example a rec-
tilinear version of Figure 3), so adding one rectan-
gle at a time will yield a running time of Θ(n3) or
worse. Instead, we determine the union in one go us-
ing a sweep-line algorithm. We maintain the status
of the sweep line in a data structure that can effi-
ciently (i) add a segment when a new rectangle is
encountered, (ii) report the intervals covered by this
new segment that are not currently covered (as they
introduce new edges in the silhouette polygon), and
(iii) remove a segment when the sweep line hits the
bottom of a rectangle. Segment trees [3, Section 10.3]
come close but do not provide an efficient implementa-

3



tion of the second operation: reporting k empty inter-
vals within a given range in O((k+ 1) log n) time. We
solve this by augmenting the segment tree with a field
for every node ν that indicates whether the interval
corresponding to ν is completely covered by segments
that end somewhere inside this interval. Combining
this with information about the segments completely
covering this interval that is already present in the
segment tree, we can implement the empty-interval
query in the given time complexity.

Theorem 4 The validity of a trip-let obtained from
three rectilinear shapes of total complexity n can be
determined in O(n2 log n) time.

A formal proof is omitted due to lack of space.

4 Determining connectedness

To check whether the intersection of three orthogonal
prisms is connected, we again use a sweep-plane algo-
rithm. In short, it maintains the intersection of the
sweep plane with the object, which we call a section,
and keeps a data structure representing the connect-
edness of the components of the object already passed
by the sweep plane. Each time a new part of the ob-
ject hits the sweep plane, the algorithm determines
whether this part is connected to any other known
part and perhaps even connects two parts that were
not connected before. Then, using a union-find data
structure, we can determine whether the final object
is connected. Our objective is to make the running
time of the algorithm linearly dependent on the com-
plexity of the object, up to a polylogarithmic factor.

Because our algorithm effectively calculates the in-
tersection of the three prisms, it may be compared to
the algorithm for Boolean operations on orthogonal
polyhedra by Aguilera and Ayala [2]1. The key dif-
ference with this algorithm is in the way new sections
are computed. Instead of doing the same Boolean op-
eration (intersection in our case) on two objects of
lower dimension (the rectilinear polygon forming the
intersection of the sweep plane and two of the three
prism on the one hand, and the third shape on the
other hand), we update our frame incrementally so
that we do not spend time on parts of a section that
will not cause new vertices of the final object.

This way, we can determine whether a trip-let from
rectilinear shapes is connected in O((n2 + k) log n)
time. Combining this result with that from the pre-
vious section, we obtain our last theorem.

Theorem 5 Given three rectilinear shapes with n
vertices in total, we can determine whether the inter-
section of the prisms induced by these shapes forms a

1We do not understand Aguilera and Ayala’s claim that
their algorithm runs in time linear in the number of vertices
of the input polyhedra.

valid and connected trip-let in O((n2 +k) log n) time,
where k is the complexity of the trip-let.

Note that by Lemma 1, k = O(n3) in the worst case; if
Conjecture 1 holds, the algorithms run in O(n2 log n)
time.

5 Open problems

The running times of our algorithms for rectilinear in-
put shapes are almost optimal within the class of al-
gorithms that actually construct the objects or silhou-
ettes. Finding the conditions O’Rourke is looking for,
or the problem of whether it is possible to do better
by somehow finding the answers without construct-
ing the silhouettes or objects first, is still open: we
do not know of any non-trivial lower bounds for this
case yet. Furthermore, does our conjecture hold, that
is, does any connected trip-let have at most quadratic
complexity?

Acknowledgments

We thank Christ van Willegen for bringing these prob-
lems to our attention.

References

[1] P. K. Agarwal and J. O’Rourke. Computational
Geometry Column 34. SIGACT News 29(3):27–
32, 1998. http://www.cs.duke.edu/~pankaj/

scg98-openprobs/.

[2] A. Aguilera and D. Ayala. Orthogonal polyhedra as
geometric bounds in constructive solid geometry. Proc.
4th ACM Symp. Solid Modeling and Applications, pp.
56–67, 1997.

[3] M. de Berg, O. Cheong, M. van Kreveld, and M. Over-
mars. Computational Geometry: Algorithms and Ap-
plications. Springer-Verlag, third edition, 2008.

[4] A. Bottino and A. Laurentini. Introducing a new prob-
lem: Shape-from-silhouette when the relative positions
of the viewpoints is unknown. IEEE Trans. Pattern
Analysis and Machine Intel., 25(11):1484–1493, 2003.

[5] P. Hachenberger, L. Kettner, and K. Mehlhorn.
Boolean operations on 3D selective Nef complexes:
Data structure, algorithms, optimized implementation
and experiments. Comput. Geom. Theory Appl., 38(1–
2):64–99, 2007.

[6] D. R. Hofstadter. Gödel, Escher, Bach: An Eternal
Golden Braid. Basic Books, 1979.

[7] A. Laurentini. The visual hull concept for silhouette-
based image understanding. IEEE Trans. Pattern
Analysis and Machine Intel., 16(2):150–162, 1994.

[8] T. Ohgami and K. Sugihara. Realizability of solids
from three silhouettes. In Abstracts 24th European
Workshop Comput. Geom., pp. 233–236, 2008.

4

http://www.cs.duke.edu/~pankaj/scg98-openprobs/
http://www.cs.duke.edu/~pankaj/scg98-openprobs/
http://dx.doi.org/10.1145/267734.267754
http://dx.doi.org/10.1145/267734.267754
http://dx.doi.org/10.1109/TPAMI.2003.1240121
http://dx.doi.org/10.1109/TPAMI.2003.1240121
http://dx.doi.org/10.1109/TPAMI.2003.1240121
http://dx.doi.org/10.1016/j.comgeo.2006.11.009
http://dx.doi.org/10.1016/j.comgeo.2006.11.009
http://dx.doi.org/10.1016/j.comgeo.2006.11.009
http://dx.doi.org/10.1109/34.273735
http://dx.doi.org/10.1109/34.273735
http://eurocg08.loria.fr/EuroCG08Abstracts.pdf
http://eurocg08.loria.fr/EuroCG08Abstracts.pdf

	Introduction
	Complexity of objects and silhouettes
	Determining validity
	Determining connectedness
	Open problems
	Acknowledgments
	References

